
Parsing	III
Taylor	Berg-Kirkpatrick	– CMU

Slides:	Dan	Klein	– UC	Berkeley

Algorithms	for	NLP

Unsupervised	Tagging

Unsupervised	Tagging?
§ AKA	part-of-speech	induction
§ Task:

§ Raw	sentences	in
§ Tagged	sentences	out

§ Obvious	thing	to	do:
§ Start	with	a	(mostly)	uniform	HMM
§ Run	EM
§ Inspect	results

EM	for	HMMs:	Process
§ Alternate	between	recomputing	distributions	over	hidden	variables	(the	

tags)	and	reestimating	parameters
§ Crucial	step:	we	want	to	tally	up	how	many	(fractional)	counts	of	each	

kind	of	transition	and	emission	we	have	under	current	params:

§ Same	quantities	we	needed	to	train	a	CRF!

EM	for	HMMs:	Quantities
§ Total	path	values	(correspond	to	probabilities	here):

The	State	Lattice	/	Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates END

EM	for	HMMs:	Process

§ From	these	quantities,	can	compute	expected	transitions:

§ And	emissions:

Merialdo:	Setup
§ Some	(discouraging)	experiments	[Merialdo	94]

§ Setup:
§ You	know	the	set	of	allowable	tags	for	each	word
§ Fix	k	training	examples	to	their	true	labels

§ Learn	P(w|t)	on	these	examples
§ Learn	P(t|t-1,t-2)	on	these	examples

§ On	n	examples,	re-estimate	with	EM

§ Note:	we	know	allowed	tags	but	not	frequencies

Merialdo:	Results

Distributional	Clustering

president the __ of
president the __ said
governor the __ of
governor the __ appointed
said sources __ ¨
said president __ that
reported sources __ ¨

president
governor

said
reported

the
a

¨ the president said that the downturn was over ¨

[Finch and Chater 92, Shuetze 93, many others]

Distributional	Clustering
§ Three	main	variants	on	the	same	idea:

§ Pairwise	similarities	and	heuristic	clustering
§ E.g.	[Finch	and	Chater	92]
§ Produces	dendrograms

§ Vector	space	methods
§ E.g.	[Shuetze	93]
§ Models	of	ambiguity

§ Probabilistic	methods
§ Various	formulations,	e.g.	[Lee	and	Pereira	99]

Nearest	Neighbors

Dendrograms																							_

Dendrograms																							_

Vector	Space	Version
§ [Shuetze	93]	clusters	words	as	points	in	Rn

§ Vectors	too	sparse,	use	SVD	to	reduce

Mw

context counts

U
S V

w

context counts

Cluster these 50-200 dim vectors instead.

Õ -=
i

iiii ccPcwPCSP)|()|(),(1

Õ +-=
i

iiiiii cwwPcwPcPCSP)|,()|()(),(11

A	Probabilistic	Version?

¨ the president said that the downturn was over ¨

c1 c2 c6c5 c7c3 c4 c8

¨ the president said that the downturn was over ¨

c1 c2 c6c5 c7c3 c4 c8

What	Else?
§ Various	newer	ideas:

§ Context	distributional	clustering	[Clark	00]
§ Morphology-driven	models	[Clark	03]
§ Contrastive	estimation	[Smith	and	Eisner	05]
§ Feature-rich	induction	[Haghighi	and	Klein	06]

§ Also:
§ What	about	ambiguous	words?
§ Using	wider	context	signatures	has	been	used	for	learning	
synonyms	(what’s	wrong	with	this	approach?)

§ Can	extend	these	ideas	for	grammar	induction	(later)

Computing Marginals

= sum of all paths through s at t
sum of all paths

Forward	Scores

Backward Scores

Total	Scores

Syntax

Parse	Trees

The move followed a round of similar increases by other lenders,
reflecting a continuing decline in that market

Phrase	Structure	Parsing
§ Phrase	structure	parsing	

organizes	syntax	into	
constituents	or	brackets

§ In	general,	this	involves	
nested	trees

§ Linguists	can,	and	do,	
argue	about	details

§ Lots	of	ambiguity

§ Not	the	only	kind	of	
syntax…

new art critics write reviews with computers

PP

NP
NP

N’

NP

VP

S

Constituency	Tests

§ How	do	we	know	what	nodes	go	in	the	tree?

§ Classic	constituency	tests:
§ Substitution	by	proform
§ Question	answers
§ Semantic	gounds

§ Coherence
§ Reference
§ Idioms

§ Dislocation
§ Conjunction

§ Cross-linguistic	arguments,	too

Conflicting	Tests
§ Constituency	isn’t	always	clear

§ Units	of	transfer:
§ think	about	~	penser à
§ talk	about	~	hablar de

§ Phonological	reduction:
§ I	will	go	® I’ll	go
§ I	want	to	go	® I	wanna go
§ a	le	centre® au	centre

§ Coordination
§ He	went	to	and	came	from	the	store.

La vélocité des ondes sismiques

Classical	NLP:	Parsing

§ Write	symbolic	or	logical	rules:

§ Use	deduction	systems	to	prove	parses	from	words
§ Minimal	grammar	on	sentence:	36	parses
§ Simple	10-rule	grammar:	592	parses
§ Real-size	grammar:	many	millions	of	parses

§ This	scaled	very	badly,	didn’t	yield	broad-coverage	tools

Grammar (CFG) Lexicon

ROOT ® S

S ® NP VP

NP ® DT NN

NP ® NN NNS

NN ® interest

NNS ® raises

VBP ® interest

VBZ ® raises

…

NP ® NP PP

VP ® VBP NP

VP ® VBP NP PP

PP ® IN NP

Ambiguities

Ambiguities:	PP	Attachment

Attachments

§ I	cleaned	the	dishes	from	dinner

§ I	cleaned	the	dishes	with	detergent

§ I	cleaned	the	dishes	in	my	pajamas

§ I	cleaned	the	dishes	in	the	sink

Syntactic	Ambiguities	I

§ Prepositional	phrases:
They	cooked	the	beans	in	the	pot	on	the	stove	with	handles.

§ Particle	vs.	preposition:
The	puppy	tore	up	the	staircase.

§ Complement	structures
The	tourists	objected	to	the	guide	that	they	couldn’t	hear.
She	knows	you	like	the	back	of	her	hand.

§ Gerund	vs.	participial	adjective
Visiting	relatives	can	be	boring.
Changing	schedules	frequently	confused	passengers.

Syntactic	Ambiguities	II
§ Modifier	scope	within	NPs

impractical	design	requirements
plastic	cup	holder

§ Multiple	gap	constructions
The	chicken	is	ready	to	eat.
The	contractors	are	rich	enough	to	sue.

§ Coordination	scope:
Small	rats	and	mice	can	squeeze	into	holes	or	cracks	in	the	
wall.

Dark	Ambiguities

§ Dark	ambiguities: most	analyses	are	shockingly	bad	
(meaning,	they	don’t	have	an	interpretation	you	can	get	
your	mind	around)

§ Unknown	words	and	new	usages
§ Solution:	We	need	mechanisms	to	focus	attention	on	the	
best	ones,	probabilistic	techniques	do	this

This	analysis	corresponds	to	
the	correct	parse	of	

“This	will	panic	buyers	!	”

Ambiguities	as	Trees

PCFGs

Probabilistic	Context-Free	Grammars

§ A	context-free	grammar	is	a	tuple	<N,	T,	S,	R>
§ N :	the	set	of	non-terminals

§ Phrasal	categories:	S,	NP,	VP,	ADJP,	etc.
§ Parts-of-speech	(pre-terminals):	NN,	JJ,	DT,	VB

§ T :	the	set	of	terminals	(the	words)
§ S :	the	start	symbol

§ Often	written	as	ROOT	or	TOP
§ Not	usually	the	sentence	non-terminal	S

§ R :	the	set	of	rules
§ Of	the	form	X	® Y1 Y2 …	Yk,	with	X,	Yi Î N
§ Examples:	S	® NP	VP,			VP	® VP	CC	VP
§ Also	called	rewrites,	productions,	or	local	trees

§ A	PCFG	adds:
§ A	top-down	production	probability	per	rule	P(Y1 Y2 …	Yk	|	X)

Treebank	Sentences

Treebank	Grammars

§ Need	a	PCFG	for	broad	coverage	parsing.
§ Can	take	a	grammar	right	off	the	trees	(doesn’t	work	well):

§ Better	results	by	enriching	the	grammar	(e.g.,	lexicalization).
§ Can	also	get	state-of-the-art	parsers	without	lexicalization.

ROOT ® S 1

S ® NP VP . 1

NP ® PRP 1

VP ® VBD ADJP 1

…..

PLURAL NOUN

NOUNDET
DET

ADJ

NOUN

NP NP

CONJ

NP PP

Treebank	Grammar	Scale

§ Treebank	grammars	can	be	enormous
§ As	FSAs,	the	raw	grammar	has	~10K	states,	excluding	the	lexicon
§ Better	parsers	usually	make	the	grammars	larger,	not	smaller

NP

Chomsky	Normal	Form

§ Chomsky	normal	form:
§ All	rules	of	the	form	X	® Y	Z	or	X	® w
§ In	principle,	this	is	no	limitation	on	the	space	of	(P)CFGs

§ N-ary	rules	introduce	new	non-terminals

§ Unaries	/	empties	are	“promoted”
§ In	practice	it’s	kind	of	a	pain:

§ Reconstructing	n-aries	is	easy
§ Reconstructing	unaries	is	trickier
§ The	straightforward	transformations	don’t	preserve	tree	scores

§ Makes	parsing	algorithms	simpler!

VP

[VP ® VBD NP •]

VBD NP PP PP

[VP ® VBD NP PP •]

VBD NP PP PP

VP

CKY	Parsing

A	Recursive	Parser

§ Will	this	parser	work?
§ Why	or	why	not?
§ Memory	requirements?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

A	Memoized	Parser
§ One	small	change:

bestScore(X,i,j,s)
if (scores[X][i][j] == null)

if (j = i+1)
score = tagScore(X,s[i])

else
score = max score(X->YZ) *

bestScore(Y,i,k) *
bestScore(Z,k,j)

scores[X][i][j] = score
return scores[X][i][j]

§ Can	also	organize	things	bottom-up

A	Bottom-Up	Parser	(CKY)

bestScore(s)
for (i : [0,n-1])
for (X : tags[s[i]])
score[X][i][i+1] =

tagScore(X,s[i])
for (diff : [2,n])
for (i : [0,n-diff])
j = i + diff
for (X->YZ : rule)
for (k : [i+1, j-1])
score[X][i][j] = max score[X][i][j],

score(X->YZ) *
score[Y][i][k] *
score[Z][k][j]

Y Z

X

i k j

Unary	Rules
§ Unary	rules?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

max score(X->Y) *
bestScore(Y,i,j)

CNF	+	Unary	Closure

§ We	need	unaries	to	be	non-cyclic
§ Can	address	by	pre-calculating	the	unary	closure
§ Rather	than	having	zero	or	more	unaries,	always	have	
exactly	one

§ Alternate	unary	and	binary	layers
§ Reconstruct	unary	chains	afterwards

NP

DT NN

VP

VBD
NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR

Alternating	Layers

bestScoreU(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->Y) *
bestScoreB(Y,i,j)

bestScoreB(X,i,j,s)
return max max score(X->YZ) *

bestScoreU(Y,i,k) *
bestScoreU(Z,k,j)

Analysis

Memory
§ How	much	memory	does	this	require?

§ Have	to	store	the	score	cache
§ Cache	size:	|symbols|*n2 doubles
§ For	the	plain	treebank	grammar:

§ X	~	20K,	n	=	40,	double	~	8	bytes	=	~	256MB
§ Big,	but	workable.

§ Pruning:	Beams
§ score[X][i][j]	can	get	too	large	(when?)
§ Can	keep	beams	(truncated	maps	score[i][j])	which	only	store	the	best	few	

scores	for	the	span	[i,j]

§ Pruning:	Coarse-to-Fine
§ Use	a	smaller	grammar	to	rule	out	most	X[i,j]
§ Much	more	on	this	later…

Time:	Theory
§ How	much	time	will	it	take	to	parse?

§ For	each	diff	(<=	n)
§ For	each	i (<=	n)

§ For	each	rule	X	® Y	Z	
§ For	each	split	point	k
Do	constant	work

§ Total	time:	|rules|*n3

§ Something	like	5	sec	for	an	unoptimized parse	of	a	
20-word	sentence

Y Z

X

i k j

Time:	Practice

§ Parsing	with	the	vanilla	treebank grammar:

§ Why’s	it	worse	in	practice?
§ Longer	sentences	“unlock”	more	of	the	grammar
§ All	kinds	of	systems	issues	don’t	scale

~ 20K Rules

(not an
optimized
parser!)

Observed
exponent:

3.6

Same-Span	Reachability

ADJP ADVP
FRAG INTJ NP
PP PRN QP S
SBAR UCP VP

WHNP

TOP

LST

CONJP

WHADJP

WHADVP

WHPP

NX

NAC

SBARQ

SINV

RRCSQ X

PRT

Rule	State	Reachability

§ Many	states	are	more	likely	to	match	larger	spans!

Example: NP CC •

NP CC

0 nn-1
1 Alignment

Example: NP CC NP •

NP CC

0 nn-k-1
n AlignmentsNP

n-k

Efficient	CKY

§ Lots	of	tricks	to	make	CKY	efficient
§ Some	of	them	are	little	engineering	details:

§ E.g.,	first	choose	k,	then	enumerate	through	the	Y:[i,k]	which	are	
non-zero,	then	loop	through	rules	by	left	child.

§ Optimal	layout	of	the	dynamic	program	depends	on	grammar,	
input,	even	system	details.

§ Another	kind	is	more	important	(and	interesting):
§ Many	X[i,j]	can	be	suppressed	on	the	basis	of	the	input	string
§ We’ll	see	this	next	class	as	figures-of-merit,	A*	heuristics,	coarse-
to-fine,	etc

Agenda-Based	Parsing

Agenda-Based	Parsing
§ Agenda-based	parsing	is	like	graph	search	(but	over	a	

hypergraph)
§ Concepts:

§ Numbering:	we	number	fenceposts	between	words
§ “Edges”	or	items:	spans	with	labels,	e.g.	PP[3,5],	represent	the	sets	of	

trees	over	those	words	rooted	at	that	label	(cf.	search	states)
§ A	chart:	records	edges	we’ve	expanded	(cf.	closed	set)
§ An	agenda:	a	queue	which	holds	edges	(cf.	a	fringe	or	open	set)

0 1 2 3 4 5
critics write reviews with computers

PP

Word	Items
§ Building	an	item	for	the	first	time	is	called	discovery.		Items	go	

into	the	agenda	on	discovery.
§ To	initialize,	we	discover	all	word	items	(with	score	1.0).

critics write reviews with computers

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

0 1 2 3 4 5

AGENDA

CHART [EMPTY]

Unary	Projection
§ When	we	pop	a	word	item,	the	lexicon	tells	us	the	tag	item	

successors	(and	scores)	which	go	on	the	agenda

critics write reviews with computers

0 1 2 3 4 5
critics write reviews with computers

critics[0,1] write[1,2]
NNS[0,1]

reviews[2,3] with[3,4] computers[4,5]
VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]

Item	Successors
§ When	we	pop	items	off	of	the	agenda:

§ Graph	successors:	unary	projections	(NNS	® critics,	NP	® NNS)

§ Hypergraph successors:	combine	with	items	already	in	our	chart

§ Enqueue /	promote	resulting	items	(if	not	in	chart	already)
§ Record	backtraces as	appropriate
§ Stick	the	popped	edge	in	the	chart	(closed	set)

§ Queries	a	chart	must	support:
§ Is	edge	X[i,j]	in	the	chart?		(What	score?)
§ What	edges	with	label	Y	end	at	position	j?
§ What	edges	with	label	Z	start	at	position	i?	

Y[i,j] with X ® Y forms X[i,j]

Y[i,j] and Z[j,k] with X ® Y Z form X[i,k]

Y Z

X

An	Example

0 1 2 3 4 5
critics write reviews with computers

NNS VBP NNS IN NNS

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] NP[2,3] NP[4,5]

NP NP NP

VP[1,2] S[0,2]

VP

PP[3,5]

PP

VP[1,3]

VP

ROOT[0,2]

S
ROOT

S
ROOT

S[0,3] VP[1,5]

VP

NP[2,5]

NP

ROOT[0,3] S[0,5] ROOT[0,5]

S

ROOT

Empty	Elements
§ Sometimes	we	want	to	posit	nodes	in	a	parse	tree	that	don’t	

contain	any	pronounced	words:

§ These	are	easy	to	add	to	a	agenda-based	parser!
§ For	each	position	i,	add	the	“word”	edge	e[i,i]
§ Add	rules	like	NP	® e to	the	grammar
§ That’s	it!

0 1 2 3 4 5
I like to parse empties

e e e e e e

NP VP

I want you to parse this sentence

I want [] to parse this sentence

UCS	/	A*

§ With	weighted	edges,	order	matters
§ Must	expand	optimal	parse	from	

bottom	up	(subparses	first)
§ CKY	does	this	by	processing	smaller	

spans	before	larger	ones
§ UCS	pops	items	off	the	agenda	in	

order	of	decreasing	Viterbi	score
§ A*	search	also	well	defined

§ You	can	also	speed	up	the	search	
without	sacrificing	optimality
§ Can	select	which	items	to	process	first
§ Can	do	with	any	“figure	of	merit”	

[Charniak	98]
§ If	your	figure-of-merit	is	a	valid	A*	

heuristic,	no	loss	of	optimiality	[Klein	
and	Manning	03]

X

n0 i j

(Speech)	Lattices
§ There	was	nothing	magical	about	words	spanning	exactly	

one	position.
§ When	working	with	speech,	we	generally	don’t	know	

how	many	words	there	are,	or	where	they	break.
§ We	can	represent	the	possibilities	as	a	lattice	and	parse	

these	just	as	easily.

I
awe

of

van

eyes

saw
a

‘ve

an

Ivan

Learning	PCFGs

Treebank	PCFGs
§ Use	PCFGs	for	broad	coverage	parsing
§ Can	take	a	grammar	right	off	the	trees	(doesn’t	work	well):

ROOT ® S 1

S ® NP VP . 1

NP ® PRP 1

VP ® VBD ADJP 1

…..

Model F1
Baseline 72.0

[Charniak 96]

Conditional	Independence?

§ Not	every	NP	expansion	can	fill	every	NP	slot
§ A	grammar	with	symbols	like	“NP”	won’t	be	context-free
§ Statistically,	conditional	independence	too	strong

Non-Independence
§ Independence	assumptions	are	often	too	strong.

§ Example:	the	expansion	of	an	NP	is	highly	dependent	on	the	
parent	of	the	NP	(i.e.,	subjects	vs.	objects).

§ Also:	the	subject	and	object	expansions	are	correlated!

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Grammar	Refinement

§ Example:	PP	attachment

Grammar	Refinement

§ Structure	Annotation	[Johnson	’98,	Klein&Manning ’03]
§ Lexicalization	[Collins	’99,	Charniak ’00]
§ Latent	Variables	[Matsuzaki et	al.	05,	Petrov et	al.	’06]

Structural	Annotation

The	Game	of	Designing	a	Grammar

§ Annotation refines base treebank symbols to
improve statistical fit of the grammar
§ Structural annotation

Typical	Experimental	Setup

§ Corpus:	Penn	Treebank,	WSJ

§ Accuracy	– F1:	harmonic	mean	of	per-node	labeled	
precision	and	recall.

§ Here:	also	size	– number	of	symbols	in	grammar.

Training: sections 02-21
Development: section 22 (here, first 20 files)
Test: section 23

Vertical	Markovization

§ Vertical	Markov	
order:	rewrites	
depend	on	past	k
ancestor	nodes.
(cf.	parent	
annotation)

Order 1 Order 2

72%
73%
74%
75%
76%
77%
78%
79%

1 2v 2 3v 3

Vertical Markov Order

0
5000

10000
15000
20000
25000

1 2v 2 3v 3

Vertical Markov Order

Sy
m
bo
ls

Horizontal	Markovization

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order

Sy
m
bo
ls

Order 1 Order ¥

Unary	Splits

§ Problem:	unary	
rewrites	used	to	
transmute	
categories	so	a	
high-probability	
rule	can	be	used.

Annotation F1 Size
Base 77.8 7.5K
UNARY 78.3 8.0K

n Solution: Mark
unary rewrite
sites with -U

Tag	Splits

§ Problem:	Treebank	tags	
are	too	coarse.

§ Example:	Sentential,	PP,	
and	other	prepositions	
are	all	marked	IN.

§ Partial	Solution:
§ Subdivide	the	IN	tag. Annotation F1 Size

Previous 78.3 8.0K
SPLIT-IN 80.3 8.1K

A	Fully	Annotated	(Unlex)	Tree

Some	Test	Set	Results

§ Beats	“first	generation”	lexicalized	parsers.
§ Lots	of	room	to	improve	– more	complex	models	next.

Parser LP LR F1 CB 0 CB

Magerman 95 84.9 84.6 84.7 1.26 56.6

Collins 96 86.3 85.8 86.0 1.14 59.9

Unlexicalized 86.9 85.7 86.3 1.10 60.3

Charniak 97 87.4 87.5 87.4 1.00 62.1

Collins 99 88.7 88.6 88.6 0.90 67.1

Efficient	Parsing	for
Structural	Annotation

Grammar	Projections

NP^S	→	DT^NP	N’[…DT]^NPNP	→	DT	N’

Coarse Grammar Fine Grammar

Note:	X-Bar	Grammars	are	projections	with	rules	like	XP	→	Y	X’	or	XP	→	X’	Y	or	X’	→	X

Coarse-to-Fine	Pruning

For	each	coarse	chart	item	X[i,j],	compute	posterior	probability:

… QP NP VP …coarse:

refined:

E.g.	consider	the	span	5	to	12:

< threshold

Computing	(Max-)Marginals

Inside	and	Outside	Scores

Pruning	with	A*

§ You	can	also	speed	up	the	
search	without	sacrificing	
optimality

§ For	agenda-based	parsers:
§ Can	select	which	items	to	
process	first

§ Can	do	with	any	“figure	of	
merit”	[Charniak	98]

§ If	your	figure-of-merit	is	a	
valid	A*	heuristic,	no	loss	of	
optimiality	[Klein	and	
Manning	03]

X

n0 i j

A*	Parsing

Lexicalization

§ Annotation refines base treebank symbols to improve
statistical fit of the grammar
§ Structural annotation [Johnson ’98, Klein and Manning 03]
§ Head lexicalization [Collins ’99, Charniak ’00]

The	Game	of	Designing	a	Grammar

Problems	with	PCFGs

§ If	we	do	no	annotation,	these	trees	differ	only	in	one	rule:
§ VP	® VP	PP
§ NP	® NP	PP

§ Parse	will	go	one	way	or	the	other,	regardless	of	words
§ We	addressed	this	in	one	way	with	unlexicalized	grammars	(how?)
§ Lexicalization	allows	us	to	be	sensitive	to	specific	words

Problems	with	PCFGs

§ What’s	different	between	basic	PCFG	scores	here?
§ What	(lexical)	correlations	need	to	be	scored?

Lexicalized	Trees

§ Add	“head	words”	to	
each	phrasal	node
§ Syntactic	vs.	semantic	

heads
§ Headship	not	in	(most)	

treebanks
§ Usually	use	head	rules,	

e.g.:
§ NP:

§ Take	leftmost	NP
§ Take	rightmost	N*
§ Take	rightmost	JJ
§ Take	right	child

§ VP:
§ Take	leftmost	VB*
§ Take	leftmost	VP
§ Take	left	child

Lexicalized	PCFGs?
§ Problem:	we	now	have	to	estimate	probabilities	like

§ Never	going	to	get	these	atomically	off	of	a	treebank

§ Solution:	break	up	derivation	into	smaller	steps

Lexical	Derivation	Steps
§ A	derivation	of	a	local	tree	[Collins	99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Lexicalized	CKY

bestScore(X,i,j,h)
if (j = i+1)
return tagScore(X,s[i])

else
return
max max score(X[h]->Y[h] Z[h’]) *

bestScore(Y,i,k,h) *
bestScore(Z,k,j,h’)

max score(X[h]->Y[h’] Z[h]) *
bestScore(Y,i,k,h’) *
bestScore(Z,k,j,h)

Y[h] Z[h’]

X[h]

i h k h’ j

k,h’,X->YZ

(VP->VBD •)[saw] NP[her]

(VP->VBD...NP •)[saw]

k,h’,X->YZ

A	Recursive	Parser

§ Will	this	parser	work?
§ Why	or	why	not?
§ Memory	requirements?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

A	Memoized	Parser
§ One	small	change:

bestScore(X,i,j,s)
if (scores[X][i][j] == null)

if (j = i+1)
score = tagScore(X,s[i])

else
score = max score(X->YZ) *

bestScore(Y,i,k) *
bestScore(Z,k,j)

scores[X][i][j] = score
return scores[X][i][j]

§ Can	also	organize	things	bottom-up

A	Bottom-Up	Parser	(CKY)

bestScore(s)
for (i : [0,n-1])
for (X : tags[s[i]])
score[X][i][i+1] =

tagScore(X,s[i])
for (diff : [2,n])
for (i : [0,n-diff])
j = i + diff
for (X->YZ : rule)
for (k : [i+1, j-1])
score[X][i][j] = max score[X][i][j],

score(X->YZ) *
score[Y][i][k] *
score[Z][k][j]

Y Z

X

i k j

Unary	Rules
§ Unary	rules?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

max score(X->Y) *
bestScore(Y,i,j)

CNF	+	Unary	Closure

§ We	need	unaries	to	be	non-cyclic
§ Can	address	by	pre-calculating	the	unary	closure
§ Rather	than	having	zero	or	more	unaries,	always	have	
exactly	one

§ Alternate	unary	and	binary	layers
§ Reconstruct	unary	chains	afterwards

NP

DT NN

VP

VBD
NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR

Alternating	Layers

bestScoreU(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->Y) *
bestScoreB(Y,i,j)

bestScoreB(X,i,j,s)
return max max score(X->YZ) *

bestScoreU(Y,i,k) *
bestScoreU(Z,k,j)

Analysis

Memory
§ How	much	memory	does	this	require?

§ Have	to	store	the	score	cache
§ Cache	size:	|symbols|*n2 doubles
§ For	the	plain	treebank	grammar:

§ X	~	20K,	n	=	40,	double	~	8	bytes	=	~	256MB
§ Big,	but	workable.

§ Pruning:	Beams
§ score[X][i][j]	can	get	too	large	(when?)
§ Can	keep	beams	(truncated	maps	score[i][j])	which	only	store	the	best	few	

scores	for	the	span	[i,j]

§ Pruning:	Coarse-to-Fine
§ Use	a	smaller	grammar	to	rule	out	most	X[i,j]
§ Much	more	on	this	later…

Time:	Theory
§ How	much	time	will	it	take	to	parse?

§ For	each	diff	(<=	n)
§ For	each	i (<=	n)

§ For	each	rule	X	® Y	Z	
§ For	each	split	point	k
Do	constant	work

§ Total	time:	|rules|*n3

§ Something	like	5	sec	for	an	unoptimized parse	of	a	
20-word	sentence

Y Z

X

i k j

Time:	Practice

§ Parsing	with	the	vanilla	treebank grammar:

§ Why’s	it	worse	in	practice?
§ Longer	sentences	“unlock”	more	of	the	grammar
§ All	kinds	of	systems	issues	don’t	scale

~ 20K Rules

(not an
optimized
parser!)

Observed
exponent:

3.6

Efficient	CKY

§ Lots	of	tricks	to	make	CKY	efficient
§ Some	of	them	are	little	engineering	details:

§ E.g.,	first	choose	k,	then	enumerate	through	the	Y:[i,k]	which	are	
non-zero,	then	loop	through	rules	by	left	child.

§ Optimal	layout	of	the	dynamic	program	depends	on	grammar,	
input,	even	system	details.

§ Another	kind	is	more	important	(and	interesting):
§ Many	X[i,j]	can	be	suppressed	on	the	basis	of	the	input	string
§ We’ll	see	this	next	class	as	figures-of-merit,	A*	heuristics,	coarse-
to-fine,	etc

Binarization

§ Chomsky	normal	form:
§ All	rules	of	the	form	X	® Y	Z	or	X	® w
§ In	principle,	this	is	no	limitation	on	the	space	of	(P)CFGs

§ N-ary rules	introduce	new	non-terminals

§ Unaries /	empties	are	“promoted”
§ In	practice	it’s	kind	of	a	pain:

§ Reconstructing	n-aries is	easy
§ Reconstructing	unaries is	trickier
§ The	straightforward	transformations	don’t	preserve	tree	scores

§ Makes	parsing	algorithms	simpler!

VP

[VP ® VBD NP •]

VBD NP PP PP

[VP ® VBD NP PP •]

VBD NP PP PP

VP

Agenda-Based	Parsing

Agenda-Based	Parsing
§ Agenda-based	parsing	is	like	graph	search	(but	over	a	

hypergraph)
§ Concepts:

§ Numbering:	we	number	fenceposts	between	words
§ “Edges”	or	items:	spans	with	labels,	e.g.	PP[3,5],	represent	the	sets	of	

trees	over	those	words	rooted	at	that	label	(cf.	search	states)
§ A	chart:	records	edges	we’ve	expanded	(cf.	closed	set)
§ An	agenda:	a	queue	which	holds	edges	(cf.	a	fringe	or	open	set)

0 1 2 3 4 5
critics write reviews with computers

PP

Word	Items
§ Building	an	item	for	the	first	time	is	called	discovery.		Items	go	

into	the	agenda	on	discovery.
§ To	initialize,	we	discover	all	word	items	(with	score	1.0).

critics write reviews with computers

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

0 1 2 3 4 5

AGENDA

CHART [EMPTY]

Unary	Projection
§ When	we	pop	a	word	item,	the	lexicon	tells	us	the	tag	item	

successors	(and	scores)	which	go	on	the	agenda

critics write reviews with computers

0 1 2 3 4 5
critics write reviews with computers

critics[0,1] write[1,2]
NNS[0,1]

reviews[2,3] with[3,4] computers[4,5]
VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]

Item	Successors
§ When	we	pop	items	off	of	the	agenda:

§ Graph	successors:	unary	projections	(NNS	® critics,	NP	® NNS)

§ Hypergraph successors:	combine	with	items	already	in	our	chart

§ Enqueue /	promote	resulting	items	(if	not	in	chart	already)
§ Record	backtraces as	appropriate
§ Stick	the	popped	edge	in	the	chart	(closed	set)

§ Queries	a	chart	must	support:
§ Is	edge	X[i,j]	in	the	chart?		(What	score?)
§ What	edges	with	label	Y	end	at	position	j?
§ What	edges	with	label	Z	start	at	position	i?	

Y[i,j] with X ® Y forms X[i,j]

Y[i,j] and Z[j,k] with X ® Y Z form X[i,k]

Y Z

X

An	Example

0 1 2 3 4 5
critics write reviews with computers

NNS VBP NNS IN NNS

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] NP[2,3] NP[4,5]

NP NP NP

VP[1,2] S[0,2]

VP

PP[3,5]

PP

VP[1,3]

VP

ROOT[0,2]

S
ROOT

S
ROOT

S[0,3] VP[1,5]

VP

NP[2,5]

NP

ROOT[0,3] S[0,5] ROOT[0,5]

S

ROOT

Empty	Elements
§ Sometimes	we	want	to	posit	nodes	in	a	parse	tree	that	don’t	

contain	any	pronounced	words:

§ These	are	easy	to	add	to	a	agenda-based	parser!
§ For	each	position	i,	add	the	“word”	edge	e[i,i]
§ Add	rules	like	NP	® e to	the	grammar
§ That’s	it!

0 1 2 3 4 5
I like to parse empties

e e e e e e

NP VP

I want you to parse this sentence

I want [] to parse this sentence

UCS	/	A*

§ With	weighted	edges,	order	matters
§ Must	expand	optimal	parse	from	

bottom	up	(subparses	first)
§ CKY	does	this	by	processing	smaller	

spans	before	larger	ones
§ UCS	pops	items	off	the	agenda	in	

order	of	decreasing	Viterbi	score
§ A*	search	also	well	defined

§ You	can	also	speed	up	the	search	
without	sacrificing	optimality
§ Can	select	which	items	to	process	first
§ Can	do	with	any	“figure	of	merit”	

[Charniak	98]
§ If	your	figure-of-merit	is	a	valid	A*	

heuristic,	no	loss	of	optimiality	[Klein	
and	Manning	03]

X

n0 i j

(Speech)	Lattices
§ There	was	nothing	magical	about	words	spanning	exactly	

one	position.
§ When	working	with	speech,	we	generally	don’t	know	

how	many	words	there	are,	or	where	they	break.
§ We	can	represent	the	possibilities	as	a	lattice	and	parse	

these	just	as	easily.

I
awe

of

van

eyes

saw
a

‘ve

an

Ivan

Learning	PCFGs

Treebank	PCFGs
§ Use	PCFGs	for	broad	coverage	parsing
§ Can	take	a	grammar	right	off	the	trees	(doesn’t	work	well):

ROOT ® S 1

S ® NP VP . 1

NP ® PRP 1

VP ® VBD ADJP 1

…..

Model F1
Baseline 72.0

[Charniak 96]

Conditional	Independence?

§ Not	every	NP	expansion	can	fill	every	NP	slot
§ A	grammar	with	symbols	like	“NP”	won’t	be	context-free
§ Statistically,	conditional	independence	too	strong

Non-Independence
§ Independence	assumptions	are	often	too	strong.

§ Example:	the	expansion	of	an	NP	is	highly	dependent	on	the	
parent	of	the	NP	(i.e.,	subjects	vs.	objects).

§ Also:	the	subject	and	object	expansions	are	correlated!

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

Grammar	Refinement

§ Example:	PP	attachment

Grammar	Refinement

§ Structure	Annotation	[Johnson	’98,	Klein&Manning ’03]
§ Lexicalization	[Collins	’99,	Charniak ’00]
§ Latent	Variables	[Matsuzaki et	al.	05,	Petrov et	al.	’06]

Structural	Annotation

The	Game	of	Designing	a	Grammar

§ Annotation refines base treebank symbols to
improve statistical fit of the grammar
§ Structural annotation

Typical	Experimental	Setup

§ Corpus:	Penn	Treebank,	WSJ

§ Accuracy	– F1:	harmonic	mean	of	per-node	labeled	
precision	and	recall.

§ Here:	also	size	– number	of	symbols	in	grammar.

Training: sections 02-21
Development: section 22 (here, first 20 files)
Test: section 23

Vertical	Markovization

§ Vertical	Markov	
order:	rewrites	
depend	on	past	k
ancestor	nodes.
(cf.	parent	
annotation)

Order 1 Order 2

72%
73%
74%
75%
76%
77%
78%
79%

1 2v 2 3v 3

Vertical Markov Order

0
5000

10000
15000
20000
25000

1 2v 2 3v 3

Vertical Markov Order

Sy
m
bo
ls

Horizontal	Markovization

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order

Sy
m
bo
ls

Order 1 Order ¥

Unary	Splits

§ Problem:	unary	
rewrites	used	to	
transmute	
categories	so	a	
high-probability	
rule	can	be	used.

Annotation F1 Size
Base 77.8 7.5K
UNARY 78.3 8.0K

n Solution: Mark
unary rewrite
sites with -U

Tag	Splits

§ Problem:	Treebank	tags	
are	too	coarse.

§ Example:	Sentential,	PP,	
and	other	prepositions	
are	all	marked	IN.

§ Partial	Solution:
§ Subdivide	the	IN	tag. Annotation F1 Size

Previous 78.3 8.0K
SPLIT-IN 80.3 8.1K

A	Fully	Annotated	(Unlex)	Tree

Some	Test	Set	Results

§ Beats	“first	generation”	lexicalized	parsers.
§ Lots	of	room	to	improve	– more	complex	models	next.

Parser LP LR F1 CB 0 CB

Magerman 95 84.9 84.6 84.7 1.26 56.6

Collins 96 86.3 85.8 86.0 1.14 59.9

Unlexicalized 86.9 85.7 86.3 1.10 60.3

Charniak 97 87.4 87.5 87.4 1.00 62.1

Collins 99 88.7 88.6 88.6 0.90 67.1

Efficient	Parsing	for
Structural	Annotation

Grammar	Projections

NP^S	→	DT^NP	N’[…DT]^NPNP	→	DT	N’

Coarse Grammar Fine Grammar

Note:	X-Bar	Grammars	are	projections	with	rules	like	XP	→	Y	X’	or	XP	→	X’	Y	or	X’	→	X

Coarse-to-Fine	Pruning

For	each	coarse	chart	item	X[i,j],	compute	posterior	probability:

… QP NP VP …coarse:

refined:

E.g.	consider	the	span	5	to	12:

< threshold

Computing	(Max-)Marginals

Inside	and	Outside	Scores

Pruning	with	A*

§ You	can	also	speed	up	the	
search	without	sacrificing	
optimality

§ For	agenda-based	parsers:
§ Can	select	which	items	to	
process	first

§ Can	do	with	any	“figure	of	
merit”	[Charniak	98]

§ If	your	figure-of-merit	is	a	
valid	A*	heuristic,	no	loss	of	
optimiality	[Klein	and	
Manning	03]

X

n0 i j

A*	Parsing

Lexicalization

§ Annotation refines base treebank symbols to improve
statistical fit of the grammar
§ Structural annotation [Johnson ’98, Klein and Manning 03]
§ Head lexicalization [Collins ’99, Charniak ’00]

The	Game	of	Designing	a	Grammar

Problems	with	PCFGs

§ If	we	do	no	annotation,	these	trees	differ	only	in	one	rule:
§ VP	® VP	PP
§ NP	® NP	PP

§ Parse	will	go	one	way	or	the	other,	regardless	of	words
§ We	addressed	this	in	one	way	with	unlexicalized	grammars	(how?)
§ Lexicalization	allows	us	to	be	sensitive	to	specific	words

Problems	with	PCFGs

§ What’s	different	between	basic	PCFG	scores	here?
§ What	(lexical)	correlations	need	to	be	scored?

Lexicalized	Trees

§ Add	“head	words”	to	
each	phrasal	node
§ Syntactic	vs.	semantic	

heads
§ Headship	not	in	(most)	

treebanks
§ Usually	use	head	rules,	

e.g.:
§ NP:

§ Take	leftmost	NP
§ Take	rightmost	N*
§ Take	rightmost	JJ
§ Take	right	child

§ VP:
§ Take	leftmost	VB*
§ Take	leftmost	VP
§ Take	left	child

Lexicalized	PCFGs?
§ Problem:	we	now	have	to	estimate	probabilities	like

§ Never	going	to	get	these	atomically	off	of	a	treebank

§ Solution:	break	up	derivation	into	smaller	steps

Lexical	Derivation	Steps
§ A	derivation	of	a	local	tree	[Collins	99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Lexicalized	CKY

bestScore(X,i,j,h)
if (j = i+1)
return tagScore(X,s[i])

else
return
max max score(X[h]->Y[h] Z[h’]) *

bestScore(Y,i,k,h) *
bestScore(Z,k,j,h’)

max score(X[h]->Y[h’] Z[h]) *
bestScore(Y,i,k,h’) *
bestScore(Z,k,j,h)

Y[h] Z[h’]

X[h]

i h k h’ j

k,h’,X->YZ

(VP->VBD •)[saw] NP[her]

(VP->VBD...NP •)[saw]

k,h’,X->YZ

Efficient	Parsing	for
Lexical	Grammars

Quartic	Parsing
§ Turns	out,	you	can	do	(a	little)	better	[Eisner	99]

§ Gives	an	O(n4)	algorithm
§ Still	prohibitive	in	practice	if	not	pruned

Y[h] Z[h’]

X[h]

i h k h’ j

Y[h] Z

X[h]

i h k j

Pruning	with	Beams
§ The	Collins	parser	prunes	with	per-

cell	beams	[Collins	99]
§ Essentially,	run	the	O(n5) CKY
§ Remember	only	a	few	hypotheses	for	

each	span	<i,j>.
§ If	we	keep	K	hypotheses	at	each	span,	

then	we	do	at	most	O(nK2)	work	per	
span	(why?)

§ Keeps	things	more	or	less	cubic	(and	in	
practice	is	more	like	linear!)

§ Also:	certain	spans	are	forbidden	
entirely	on	the	basis	of	punctuation	
(crucial	for	speed)

Y[h] Z[h’]

X[h]

i h k h’ j

Pruning	with	a	PCFG

§ The	Charniak parser	prunes	using	a	two-pass,	coarse-
to-fine	approach	[Charniak 97+]
§ First,	parse	with	the	base	grammar
§ For	each	X:[i,j]	calculate	P(X|i,j,s)

§ This	isn’t	trivial,	and	there	are	clever	speed	ups
§ Second,	do	the	full	O(n5) CKY

§ Skip	any	X	:[i,j]	which	had	low	(say,	<	0.0001)	posterior
§ Avoids	almost	all	work	in	the	second	phase!

§ Charniak et	al	06:	can	use	more	passes
§ Petrov et	al	07:	can	use	many	more	passes

Results

§ Some	results
§ Collins	99	– 88.6	F1	(generative	lexical)
§ Charniak	and	Johnson	05	– 89.7	/	91.3	F1	(generative	
lexical	/	reranked)

§ Petrov	et	al	06	– 90.7	F1	(generative	unlexical)
§ McClosky	et	al	06	– 92.1	F1	(gen	+	rerank	+	self-train)

§ However
§ Bilexical	counts	rarely	make	a	difference	(why?)
§ Gildea	01	– Removing	bilexical	counts	costs	<	0.5	F1

Latent	Variable	PCFGs

§ Annotation	refines	base	treebank symbols	to	improve	
statistical	fit	of	the	grammar
§ Parent	annotation	[Johnson	’98]

The	Game	of	Designing	a	Grammar

§ Annotation	refines	base	treebank symbols	to	improve	
statistical	fit	of	the	grammar
§ Parent	annotation	[Johnson	’98]
§ Head	lexicalization [Collins	’99,	Charniak ’00]

The	Game	of	Designing	a	Grammar

§ Annotation	refines	base	treebank symbols	to	improve	
statistical	fit	of	the	grammar
§ Parent	annotation	[Johnson	’98]
§ Head	lexicalization [Collins	’99,	Charniak ’00]
§ Automatic	clustering?

The	Game	of	Designing	a	Grammar

Latent	Variable	Grammars

Parse Tree
Sentence Parameters

...

Derivations

Forward

Learning	Latent	Annotations

EM	algorithm:

X1

X2
X7X4

X5 X6X3

He was right

.

§ Brackets are known
§ Base categories are known
§ Only induce subcategories

Just	like	Forward-Backward	for	HMMs.
Backward

Refinement	of	the	DT	tag

DT

DT-1 DT-2 DT-3 DT-4

Hierarchical	refinement

Hierarchical	Estimation	Results

74

76

78

80

82

84

86

88

90

100 300 500 700 900 1100 1300 1500 1700
Total Number of grammar symbols

P
ar

si
ng

 a
cc

ur
ac

y
(F

1)

Model F1
Flat Training 87.3
Hierarchical Training 88.4

Refinement	of	the	,	tag
§ Splitting	all	categories	equally	is	wasteful:

Adaptive Splitting

§ Want to split complex categories more
§ Idea: split everything, roll back splits which

were least useful

Adaptive	Splitting	Results

Model F1
Previous 88.4
With 50% Merging 89.5

0

5

10

15

20

25

30

35

40

N
P

VP PP

AD
VP S

AD
JP

SB
AR Q

P

W
H

N
P

PR
N

N
X

SI
N

V

PR
T

W
H

PP SQ

C
O

N
JP

FR
AG

N
AC U
C

P

W
H

AD
VP IN
TJ

SB
AR

Q

R
R

C

W
H

AD
JP X

R
O

O
T

LS
T

Number	of	Phrasal	Subcategories

Number	of	Lexical	Subcategories

0

10

20

30

40

50

60

70

NN
P JJ

NN
S NN VB
N RB

VB
G VB VB
D CD IN

VB
Z

VB
P DT

NN
PS CC JJ

R
JJ

S :
PR

P
PR

P$ M
D

RB
R

W
P

PO
S

PD
T

W
RB

-L
RB

- .
EX

W
P$

W
DT

-R
RB

- ''
FW RB

S TO
$

UH
, ``

SY
M RP LS #

Learned	Splits

§ Proper Nouns (NNP):

§ Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco Street

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

§ Relative	adverbs	(RBR):

§ Cardinal	Numbers	(CD):

RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34

Learned	Splits

Final	Results	(Accuracy)

≤ 40 words
F1

all
F1

EN
G

Charniak&Johnson ‘05 (generative) 90.1 89.6

Split / Merge 90.6 90.1

G
ER

Dubey ‘05 76.3 -

Split / Merge 80.8 80.1

C
H

N

Chiang et al. ‘02 80.0 76.6

Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods

Efficient	Parsing	for
Hierarchical	Grammars

Coarse-to-Fine	Inference
§ Example:	PP	attachment

?????????

Hierarchical	Pruning

… QP NP VP …coarse:

split in two: … QP1 QP2 NP1 NP2 VP1 VP2 …

… QP1 QP1 QP3 QP4 NP1 NP2 NP3 NP4 VP1 VP2 VP3 VP4 …split in four:

split in eight: … … … … … … … … … … … … … … … … …

Bracket	Posteriors

1621	min
111	min
35	min

15	min
(no	search	error)

Unsupervised	Tagging

Unsupervised	Tagging?
§ AKA	part-of-speech	induction
§ Task:

§ Raw	sentences	in
§ Tagged	sentences	out

§ Obvious	thing	to	do:
§ Start	with	a	(mostly)	uniform	HMM
§ Run	EM
§ Inspect	results

EM	for	HMMs:	Process
§ Alternate	between	recomputing	distributions	over	hidden	variables	(the	

tags)	and	reestimating	parameters
§ Crucial	step:	we	want	to	tally	up	how	many	(fractional)	counts	of	each	

kind	of	transition	and	emission	we	have	under	current	params:

§ Same	quantities	we	needed	to	train	a	CRF!

Merialdo:	Setup
§ Some	(discouraging)	experiments	[Merialdo	94]

§ Setup:
§ You	know	the	set	of	allowable	tags	for	each	word
§ Fix	k	training	examples	to	their	true	labels

§ Learn	P(w|t)	on	these	examples
§ Learn	P(t|t-1,t-2)	on	these	examples

§ On	n	examples,	re-estimate	with	EM

§ Note:	we	know	allowed	tags	but	not	frequencies

EM	for	HMMs:	Quantities
§ Total	path	values	(correspond	to	probabilities	here):

The	State	Lattice	/	Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates END

EM	for	HMMs:	Process

§ From	these	quantities,	can	compute	expected	transitions:

§ And	emissions:

Merialdo:	Results

Projection-Based	A*

Factory payrolls fell in Sept.

NP PP

VP

S

Factory payrolls fell in Sept.

payrolls in

fell

fellFactory payrolls fell in Sept.

NP:payrolls PP:in

VP:fell

S:fellSYNTACTICp SEMANTICp

A*	Speedup

§ Total	time	dominated	by	calculation	of	A*	tables	in	each	
projection…	O(n3)

0
10
20
30
40
50
60

0 5 10 15 20 25 30 35 40
Length

Ti
m

e
(s

ec
) Combined Phase

Dependency Phase
PCFG Phase

Breaking	Up	the	Symbols

§ We	can	relax	independence	assumptions	by	
encoding	dependencies	into	the	PCFG	symbols:

§ What	are	the	most	useful	“features”	to	encode?

Parent annotation
[Johnson 98]

Marking
possessive NPs

Other	Tag	Splits

§ UNARY-DT:	mark	demonstratives	as	DT^U (“the	
X”	vs.	“those”)

§ UNARY-RB:	mark	phrasal	adverbs	as	RB^U
(“quickly”	vs.	“very”)

§ TAG-PA:	mark	tags	with	non-canonical	parents	
(“not”	is	an	RB^VP)

§ SPLIT-AUX:	mark	auxiliary	verbs	with	–AUX	[cf.	
Charniak	97]

§ SPLIT-CC:	separate	“but”	and	“&”	from	other	
conjunctions

§ SPLIT-%:	“%”	gets	its	own	tag.

F1 Size

80.4 8.1K

80.5 8.1K

81.2 8.5K

81.6 9.0K

81.7 9.1K

81.8 9.3K

