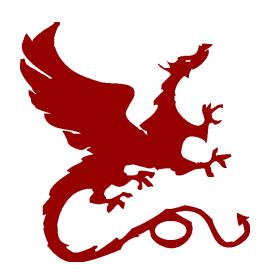
Algorithms for NLP



Parsing III

Taylor Berg-Kirkpatrick – CMU

Slides: Dan Klein – UC Berkeley

Unsupervised Tagging

Unsupervised Tagging?

- AKA part-of-speech induction
- Task:
 - Raw sentences in
 - Tagged sentences out
- Obvious thing to do:
 - Start with a (mostly) uniform HMM
 - Run EM
 - Inspect results

EM for HMMs: Process

- Alternate between recomputing distributions over hidden variables (the tags) and reestimating parameters
- Crucial step: we want to tally up how many (fractional) counts of each kind of transition and emission we have under current params:

$$count(w,s) = \sum_{i:w_i=w} P(t_i = s|\mathbf{w})$$

$$count(s \to s') = \sum_{i} P(t_{i-1} = s, t_i = s'|\mathbf{w})$$

Same quantities we needed to train a CRF!

EM for HMMs: Quantities

Total path values (correspond to probabilities here):

$$\alpha_i(s) = P(w_0 \dots w_i, s_i)$$

= $\sum_{s_{i-1}} P(s_i|s_{i-1}) P(w_i|s_i) \alpha_{i-1}(s_{i-1})$

$$\beta_i(s) = P(w_i + 1 \dots w_n | s_i)$$

$$= \sum_{s_{i+1}} P(s_{i+1} | s_i) P(w_{i+1} | s_{i+1}) \beta_{i+1}(s_{i+1})$$

The State Lattice / Trellis

\wedge	\wedge	\wedge	\(\)	\wedge	\wedge
N	N	N	N	N	N
\bigcirc	V	V	V	\bigcirc	\bigcirc
J	J	J	J	J	J
D	D	D	D	D	D
\$	\$	\$	\$	\$	\$
START	Fed	raises	interest	rates	END

EM for HMMs: Process

From these quantities, can compute expected transitions:

$$count(s \to s') = \frac{\sum_{i} \alpha_i(s) P(s'|s) P(w_i|s) \beta_{i+1}(s')}{P(\mathbf{w})}$$

And emissions:

$$count(w,s) = \frac{\sum_{i:w_i=w} \alpha_i(s)\beta_{i+1}(s)}{P(\mathbf{w})}$$

Merialdo: Setup

Some (discouraging) experiments [Merialdo 94]

Setup:

- You know the set of allowable tags for each word
- Fix k training examples to their true labels
 - Learn P(w|t) on these examples
 - Learn P(t|t₋₁,t₋₂) on these examples
- On n examples, re-estimate with EM
- Note: we know allowed tags but not frequencies

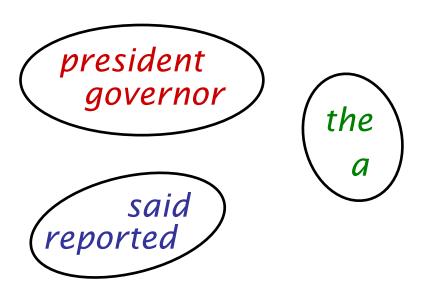
Merialdo: Results

Nι	ımber o	of tagge	ed sente:	nces use	ed for the	e initial n	nodel
	0	100	2000	5000	10000	20000	all
Iter	Co	rrect ta	gs (% w	ords) af	ter ML c	on 1M we	ords
0	77.0	90.0	95.4	96.2	96.6	96.9	97.0
1	80.5	92.6	95.8	96.3	96.6	96.7	96.8
2	81.8	93.0	95. <i>7</i>	96.1	96.3	96.4	96.4
3	83.0	93.1	95.4	95.8	96.1	96.2	96.2
4	84.0	93.0	95.2	95.5	95.8	96.0	96.0
5	84.8	92.9	95.1	95.4	95.6	95.8	95.8
6	85.3	92.8	94.9	95.2	95.5	95.6	95.7
7	85.8	92.8	94.7	95.1	95.3	95.5	95.5
8	86.1	92.7	94.6	95.0	95.2	95.4	95.4
9	86.3	92.6	94.5	94.9	95.1	95.3	95.3
10	86.6	92.6	94.4	94.8	95.0	95.2	95.2

Distributional Clustering

the president said that the downturn was over *

president	the of
president	the said ←
governor	the of
governor	the appointed
said	sources •
said	president that
reported	sources •



[Finch and Chater 92, Shuetze 93, many others]

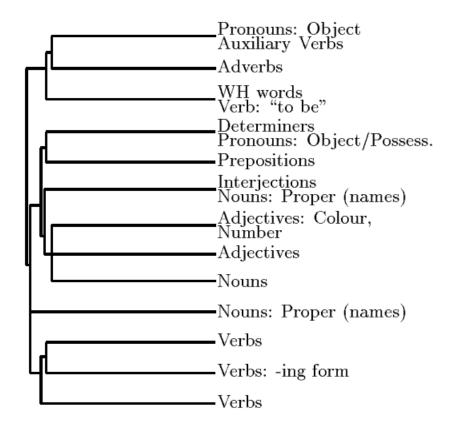
Distributional Clustering

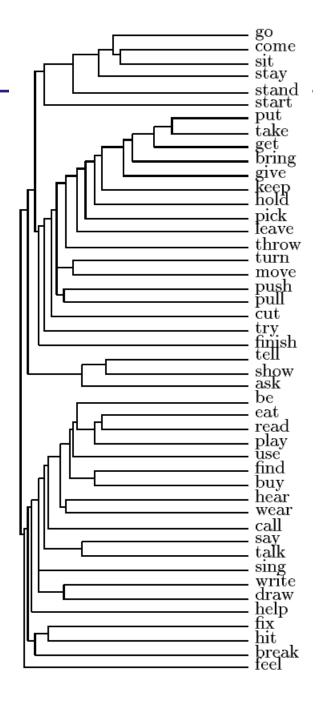
- Three main variants on the same idea:
 - Pairwise similarities and heuristic clustering
 - E.g. [Finch and Chater 92]
 - Produces dendrograms
 - Vector space methods
 - E.g. [Shuetze 93]
 - Models of ambiguity
 - Probabilistic methods
 - Various formulations, e.g. [Lee and Pereira 99]

Nearest Neighbors

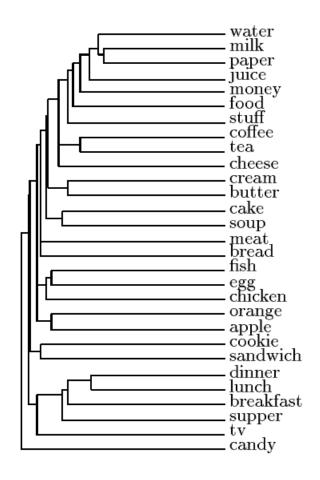
word	nearest neighbors
accompanied	submitted banned financed developed authorized headed canceled awarded barred
almost	virtually merely formally fully quite officially just nearly only less
causing	reflecting forcing providing creating producing becoming carrying particularly
classes	elections courses payments losses computers performances violations levels pictures
directors	professionals investigations materials competitors agreements papers transactions
goal	mood roof eye image tool song pool scene gap voice
japanese	chinese iraqi american western arab foreign european federal soviet indian
represent	reveal attend deliver reflect choose contain impose manage establish retain
think	believe wish know realize wonder assume feel say mean bet
york	angeles francisco sox rouge kong diego zone vegas inning layer
on	through in at over into with from for by across
must	might would could cannot will should can may does helps
they	we you i he she nobody who it everybody there

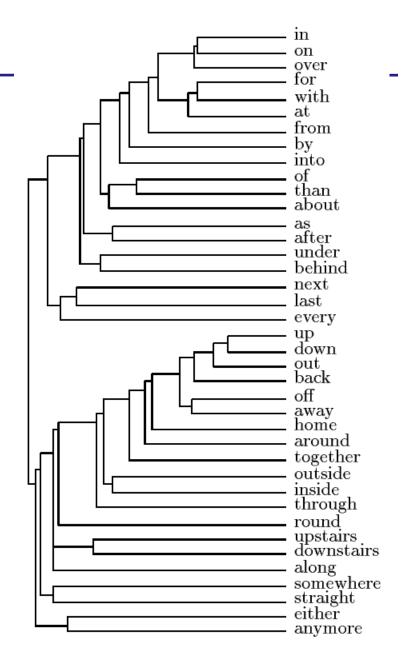
Dendrograms





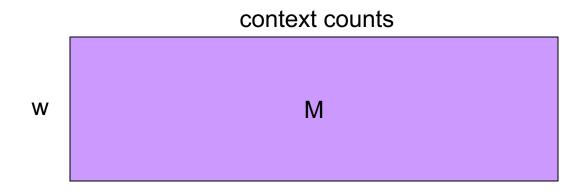
Dendrograms



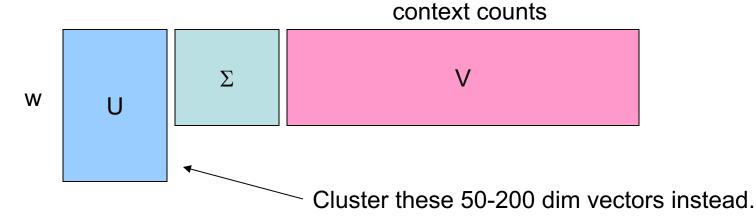


Vector Space Version

[Shuetze 93] clusters words as points in Rⁿ

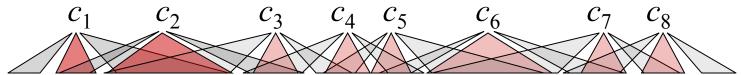


Vectors too sparse, use SVD to reduce

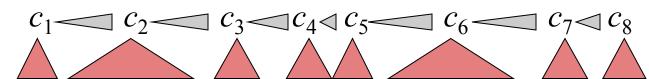


A Probabilistic Version?

$$P(S,C) = \prod_{i} P(c_{i})P(w_{i} | c_{i})P(w_{i-1}, w_{i+1} | c_{i})$$



♦ the president said that the downturn was over ◆



♦ the president said that the downturn was over ◆

What Else?

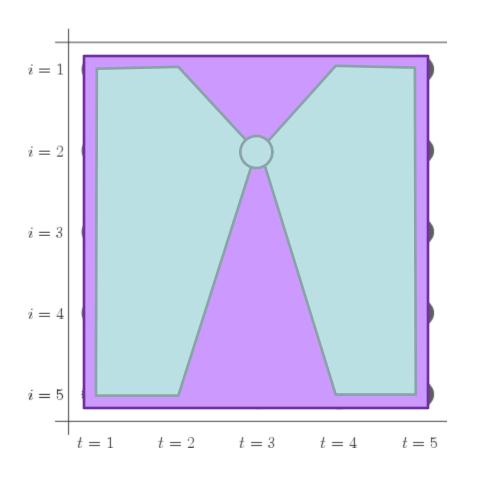
Various newer ideas:

- Context distributional clustering [Clark 00]
- Morphology-driven models [Clark 03]
- Contrastive estimation [Smith and Eisner 05]
- Feature-rich induction [Haghighi and Klein 06]

Also:

- What about ambiguous words?
- Using wider context signatures has been used for learning synonyms (what's wrong with this approach?)
- Can extend these ideas for grammar induction (later)

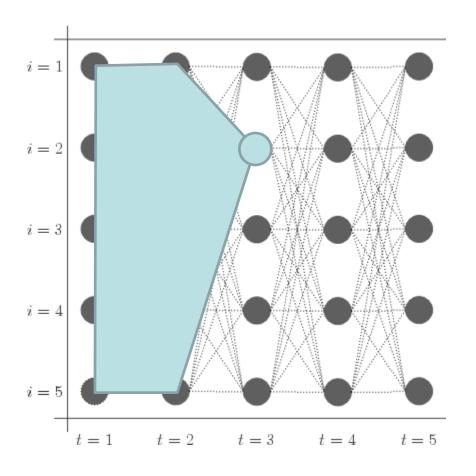
Computing Marginals



$$P(s_t|x) = \frac{P(s_t, x)}{P(x)}$$

= sum of all paths through s at t sum of all paths

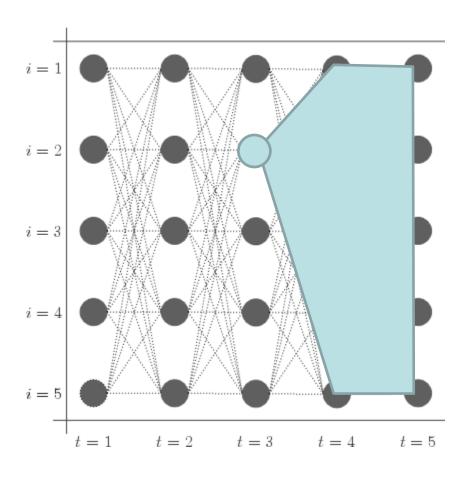
Forward Scores



$$v_t(s_t) = \max_{s_{t-1}} v_{t-1}(s_{t-1})\phi_t(s_{t-1}, s_t)$$

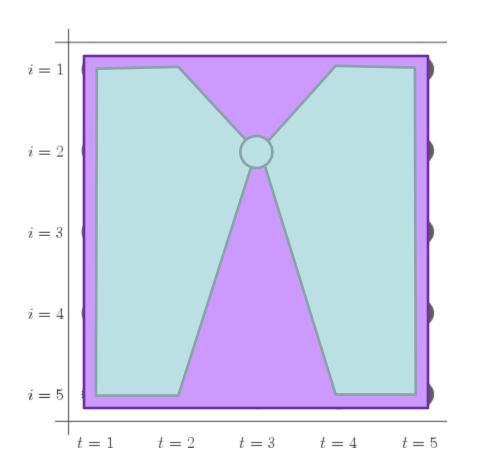
$$\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1}) \phi_t(s_{t-1}, s_t)$$

Backward Scores



$$\beta_t(s_t) = \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) \phi_t(s_t, s_{t+1})$$

Total Scores



$$P(s_t, x) = \alpha_t(s_t)\beta_t(s_t)$$

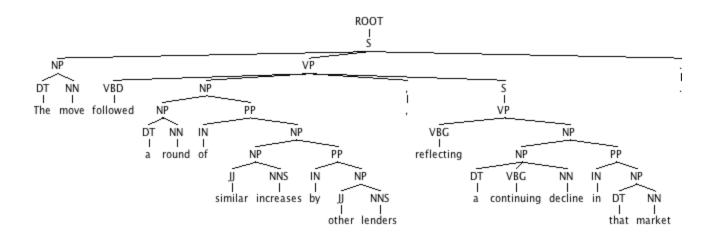
$$P(x) = \sum_{s_t} \alpha_t(s_t)\beta_t(s_t)$$

$$= \alpha_T(\text{stop})$$

$$= \beta_0(\text{start})$$

Syntax

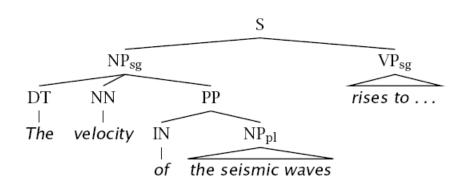
Parse Trees



The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market

Phrase Structure Parsing

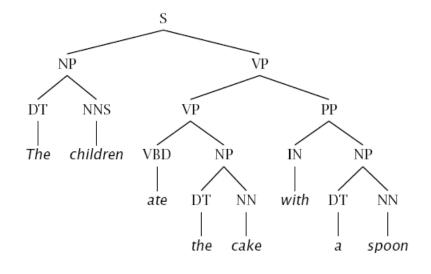
- Phrase structure parsing organizes syntax into constituents or brackets
- In general, this involves nested trees
- Linguists can, and do, argue about details
- Lots of ambiguity
- Not the only kind of syntax...



new art critics write reviews with computers

Constituency Tests

- How do we know what nodes go in the tree?
- Classic constituency tests:
 - Substitution by proform
 - Question answers
 - Semantic gounds
 - Coherence
 - Reference
 - Idioms
 - Dislocation
 - Conjunction

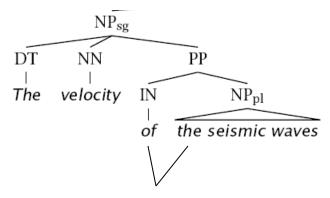


Cross-linguistic arguments, too

Conflicting Tests

Constituency isn't always clear

- Units of transfer:
 - think about ~ penser à
 - talk about ~ hablar de
- Phonological reduction:
 - I will go \rightarrow I'll go
 - I want to go → I wanna go
 - a le centre → au centre



La vélocité des ondes sismiques

- Coordination
 - He went to and came from the store.

Classical NLP: Parsing

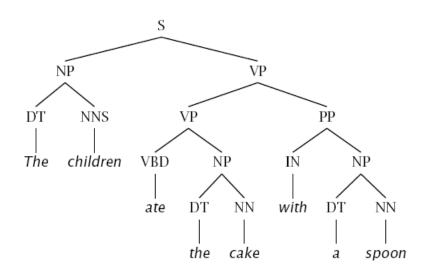
Write symbolic or logical rules:

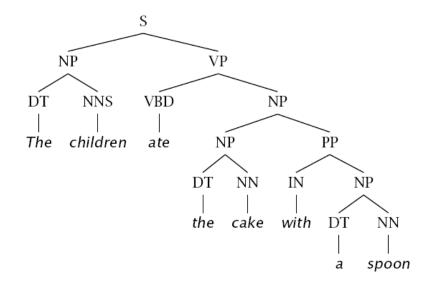
Gramm	Lexicon	
$ROOT \to S$	$NP \rightarrow NP PP$	$NN \rightarrow interest$
$S \rightarrow NP VP$	$VP \rightarrow VBP NP$	$NNS \to raises$
$NP \to DT \; NN$	$VP \rightarrow VBP NP PP$	$VBP \to interest$
$NP \rightarrow NN NNS$	$PP \to IN \; NP$	$VBZ \to raises$

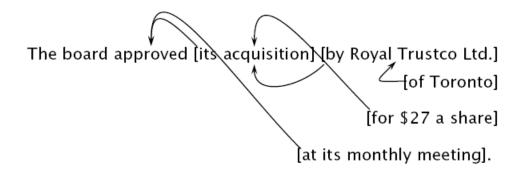
- Use deduction systems to prove parses from words
 - Minimal grammar on sentence: 36 parses
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses
- This scaled very badly, didn't yield broad-coverage tools

Ambiguities

Ambiguities: PP Attachment







Attachments

I cleaned the dishes from dinner

I cleaned the dishes with detergent

I cleaned the dishes in my pajamas

I cleaned the dishes in the sink

Syntactic Ambiguities I

- Prepositional phrases:
 They cooked the beans in the pot on the stove with handles.
- Particle vs. preposition:
 The puppy tore up the staircase.
- Complement structures The tourists objected to the guide that they couldn't hear. She knows you like the back of her hand.
- Gerund vs. participial adjective
 Visiting relatives can be boring.
 Changing schedules frequently confused passengers.

Syntactic Ambiguities II

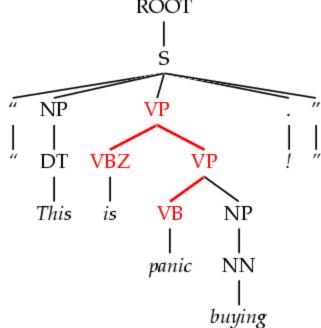
- Modifier scope within NPs impractical design requirements plastic cup holder
- Multiple gap constructions
 The chicken is ready to eat.
 The contractors are rich enough to sue.
- Coordination scope: Small rats and mice can squeeze into holes or cracks in the wall.

Dark Ambiguities

 Dark ambiguities: most analyses are shockingly bad (meaning, they don't have an interpretation you can get your mind around)

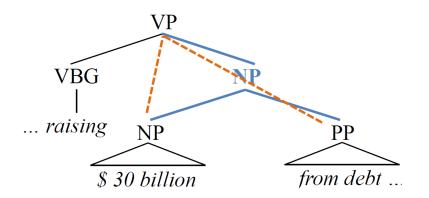
This analysis corresponds to the correct parse of

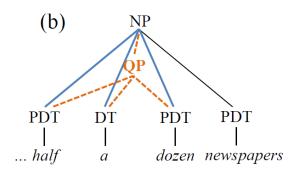
"This will panic buyers!"

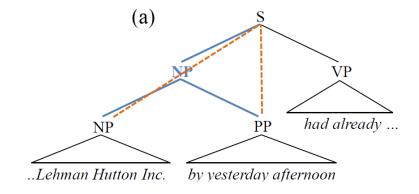


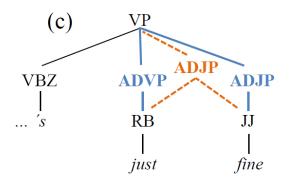
- Unknown words and new usages
- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this

Ambiguities as Trees









PCFGs

Probabilistic Context-Free Grammars

A context-free grammar is a tuple <N, T, S, R>

- N: the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- T: the set of terminals (the words)
- *S*: the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
- R: the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \dots Y_k$, with $X, Y_i \in N$
 - Examples: $S \rightarrow NP VP$, $VP \rightarrow VP CC VP$
 - Also called rewrites, productions, or local trees

A PCFG adds:

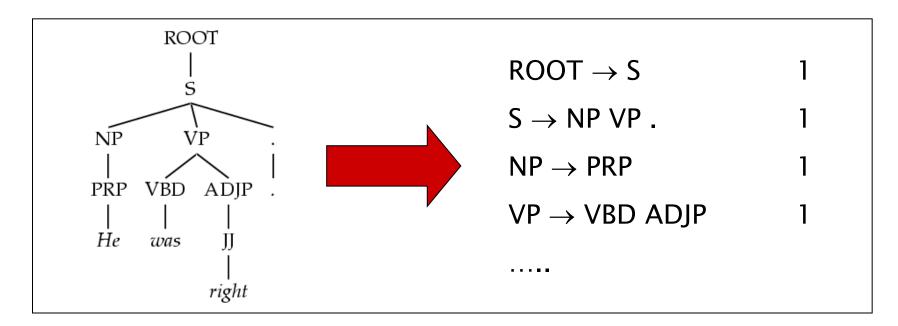
• A top-down production probability per rule $P(Y_1 Y_2 ... Y_k \mid X)$

Treebank Sentences

```
( (S (NP-SBJ The move)
     (VP followed
         (NP (NP a round)
             (PP of
                  (NP (NP similar increases)
                      (PP by
                          (NP other lenders))
                      (PP against
                          (NP Arizona real estate loans)))))
         (S-ADV (NP-SBJ *)
                (VP reflecting
                     (NP (NP a continuing decline)
                         (PP-LOC in
                                 (NP that market))))))
     .))
```


Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

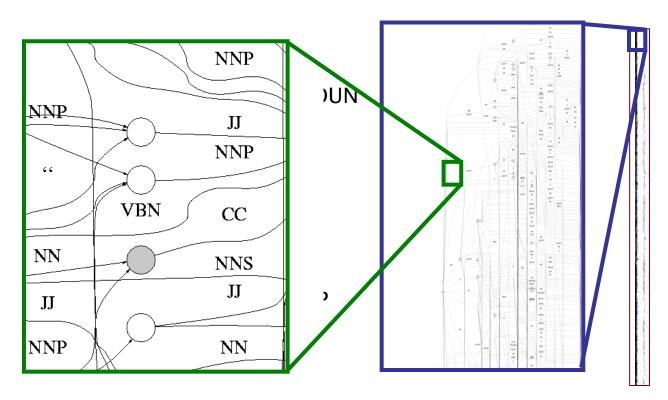


- Better results by enriching the grammar (e.g., lexicalization).
- Can also get state-of-the-art parsers without lexicalization.

Treebank Grammar Scale

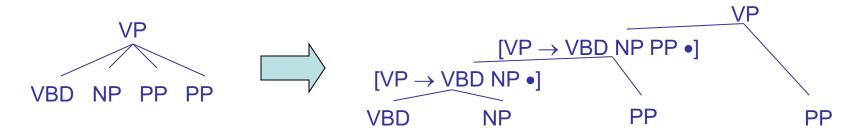
- Treebank grammars can be enormous
 - As FSAs, the raw grammar has ~10K states, excluding the lexicon
 - Better parsers usually make the grammars larger, not smaller

NP



Chomsky Normal Form

- Chomsky normal form:
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals



- Unaries / empties are "promoted"
- In practice it's kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

CKY Parsing

A Recursive Parser

```
bestScore(X,i,j,s)
  if (j = i+1)
     return tagScore(X,s[i])
  else
     return max score(X->YZ) *
          bestScore(Y,i,k) *
          bestScore(Z,k,j)
```

- Will this parser work?
- Why or why not?
- Memory requirements?

A Memoized Parser

One small change:

A Bottom-Up Parser (CKY)

Can also organize things bottom-up

```
bestScore(s)
  for (i : [0,n-1])
     for (X : tags[s[i]])
       score[X][i][i+1] =
          tagScore(X,s[i])
  for (diff : [2,n])
                                               k
     for (i : [0,n-diff])
       j = i + diff
       for (X->YZ : rule)
         for (k : [i+1, j-1])
           score[X][i][j] = max score[X][i][j],
                                 score(X->YZ) *
                                 score[Y][i][k] *
                                 score[Z][k][j]
```

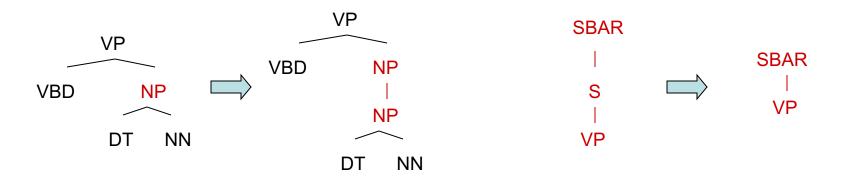
Unary Rules

• Unary rules?

```
bestScore(X,i,j,s)
  if (j = i+1)
    return tagScore(X,s[i])
  else
    return max max score(X->YZ) *
        bestScore(Y,i,k) *
        bestScore(Z,k,j)
    max score(X->Y) *
        bestScore(Y,i,j)
```


CNF + Unary Closure

- We need unaries to be non-cyclic
 - Can address by pre-calculating the unary closure
 - Rather than having zero or more unaries, always have exactly one



- Alternate unary and binary layers
- Reconstruct unary chains afterwards

Alternating Layers

```
bestScoreB(X,i,j,s)
      return max max score (X->YZ) *
                       bestScoreU(Y,i,k) *
                       bestScoreU(Z,k,j)
bestScoreU(X,i,j,s)
   if (j = i+1)
       return tagScore(X,s[i])
  else
       return max max score (X->Y) *
                       bestScoreB(Y,i,j)
```

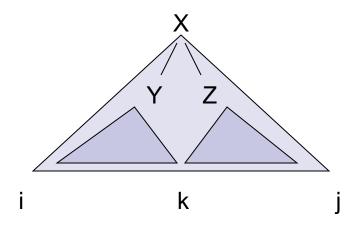
Analysis

Memory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: |symbols|*n² doubles
 - For the plain treebank grammar:
 - X ~ 20K, n = 40, double ~ 8 bytes = ~ 256MB
 - Big, but workable.
- Pruning: Beams
 - score[X][i][j] can get too large (when?)
 - Can keep beams (truncated maps score[i][j]) which only store the best few scores for the span [i,j]
- Pruning: Coarse-to-Fine
 - Use a smaller grammar to rule out most X[i,j]
 - Much more on this later...

Time: Theory

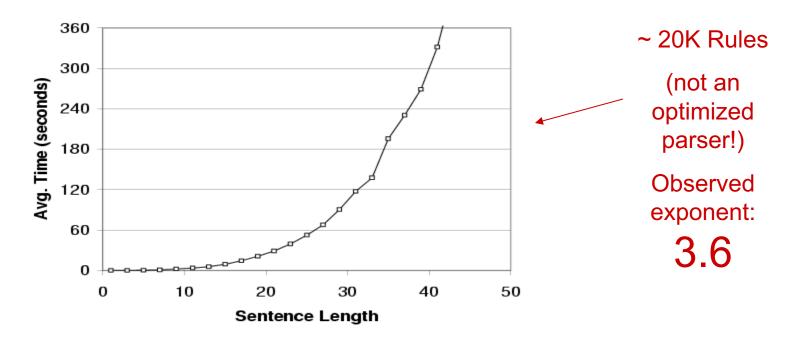
- How much time will it take to parse?
 - For each diff (<= n)</p>
 - For each i (<= n)</p>
 - For each rule $X \rightarrow Y Z$
 - For each split point kDo constant work



- Total time: |rules|*n³
- Something like 5 sec for an unoptimized parse of a 20-word sentence

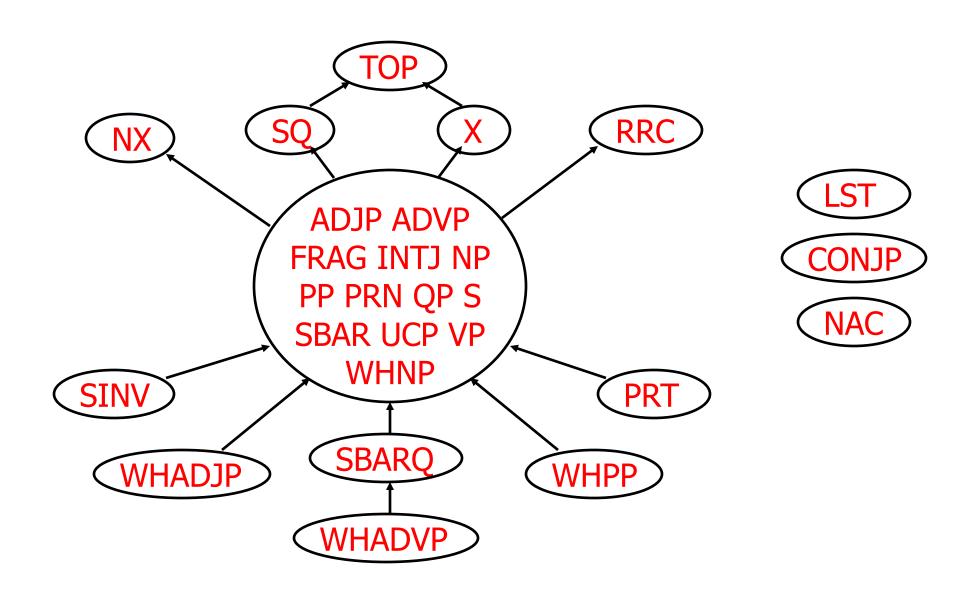
Time: Practice

Parsing with the vanilla treebank grammar:



- Why's it worse in practice?
 - Longer sentences "unlock" more of the grammar
 - All kinds of systems issues don't scale

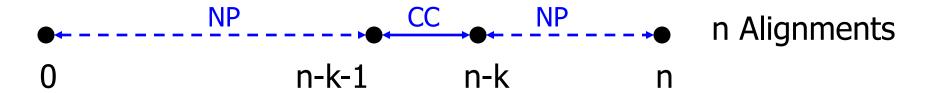
Same-Span Reachability



Rule State Reachability

Example: NP CC •

Example: NP CC NP •



Many states are more likely to match larger spans!

Efficient CKY

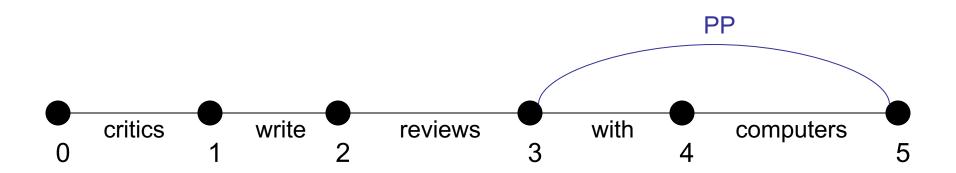
Lots of tricks to make CKY efficient

- Some of them are little engineering details:
 - E.g., first choose k, then enumerate through the Y:[i,k] which are non-zero, then loop through rules by left child.
 - Optimal layout of the dynamic program depends on grammar, input, even system details.
- Another kind is more important (and interesting):
 - Many X[i,j] can be suppressed on the basis of the input string
 - We'll see this next class as figures-of-merit, A* heuristics, coarseto-fine, etc

Agenda-Based Parsing

Agenda-Based Parsing

- Agenda-based parsing is like graph search (but over a hypergraph)
- Concepts:
 - Numbering: we number fenceposts between words
 - "Edges" or items: spans with labels, e.g. PP[3,5], represent the sets of trees over those words rooted at that label (cf. search states)
 - A chart: records edges we've expanded (cf. closed set)
 - An agenda: a queue which holds edges (cf. a fringe or open set)



Word Items

- Building an item for the first time is called discovery. Items go into the agenda on discovery.
- To initialize, we discover all word items (with score 1.0).

AGENDA

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

CHART [EMPTY]

critics write reviews with computers

Unary Projection

 When we pop a word item, the lexicon tells us the tag item successors (and scores) which go on the agenda

```
critics[0,1] write[1,2] reviews[2,3] with[3,4] computers[4,5] NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]
```


critics write reviews with computers

Item Successors

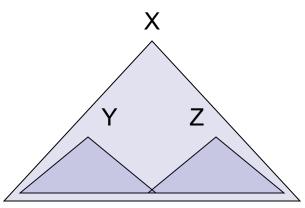
- When we pop items off of the agenda:
 - Graph successors: unary projections (NNS \rightarrow critics, NP \rightarrow NNS)

$$Y[i,j]$$
 with $X \rightarrow Y$ forms $X[i,j]$

Hypergraph successors: combine with items already in our chart

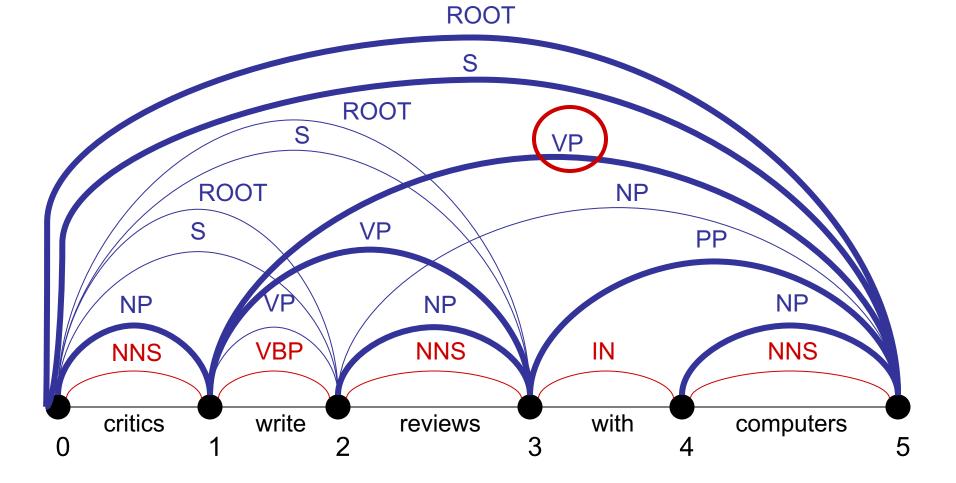
$$Y[i,j]$$
 and $Z[j,k]$ with $X \rightarrow Y Z$ form $X[i,k]$

- Enqueue / promote resulting items (if not in chart already)
- Record backtraces as appropriate
- Stick the popped edge in the chart (closed set)
- Queries a chart must support:
 - Is edge X[i,j] in the chart? (What score?)
 - What edges with label Y end at position j?
 - What edges with label Z start at position i?



An Example

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2] VP[1,3] PP[3,5] ROOT[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOT[0,5]



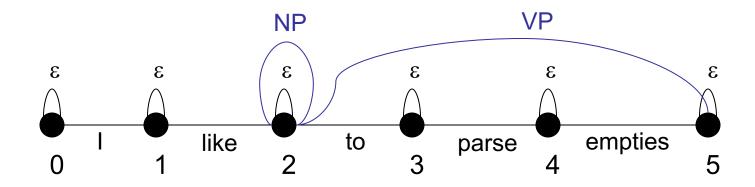
Empty Elements

Sometimes we want to posit nodes in a parse tree that don't contain any pronounced words:

I want you to parse this sentence

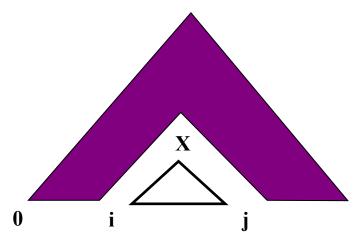
I want [] to parse this sentence

- These are easy to add to a agenda-based parser!
 - For each position i, add the "word" edge ε[i,i]
 - Add rules like NP ightarrow ϵ to the grammar
 - That's it!



UCS / A*

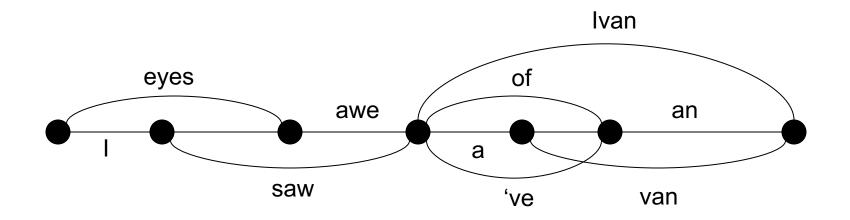
- With weighted edges, order matters
 - Must expand optimal parse from bottom up (subparses first)
 - CKY does this by processing smaller spans before larger ones
 - UCS pops items off the agenda in order of decreasing Viterbi score
 - A* search also well defined
- You can also speed up the search without sacrificing optimality
 - Can select which items to process first
 - Can do with any "figure of merit" [Charniak 98]
 - If your figure-of-merit is a valid A* heuristic, no loss of optimiality [Klein and Manning 03]



n

(Speech) Lattices

- There was nothing magical about words spanning exactly one position.
- When working with speech, we generally don't know how many words there are, or where they break.
- We can represent the possibilities as a lattice and parse these just as easily.

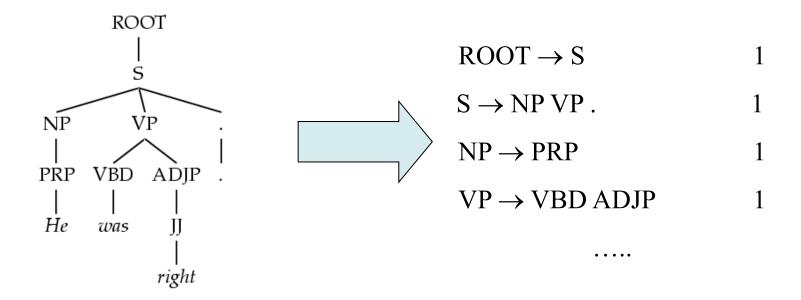


Learning PCFGs

Treebank PCFGs

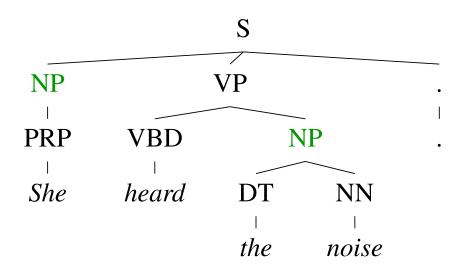
[Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):



Model	F1
Baseline	72.0

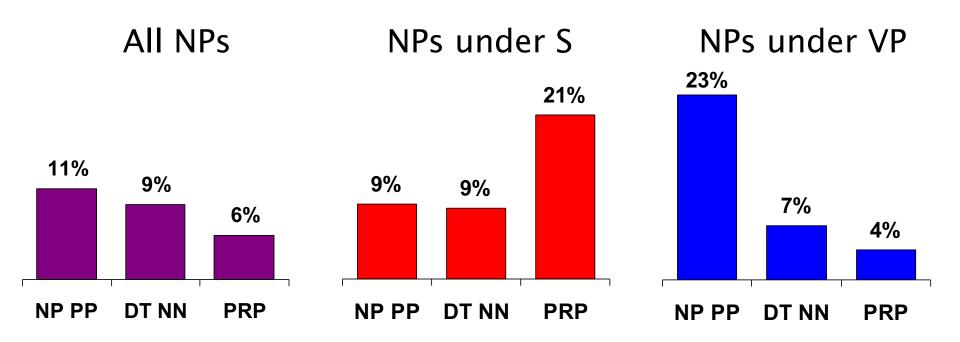
Conditional Independence?



- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

Non-Independence

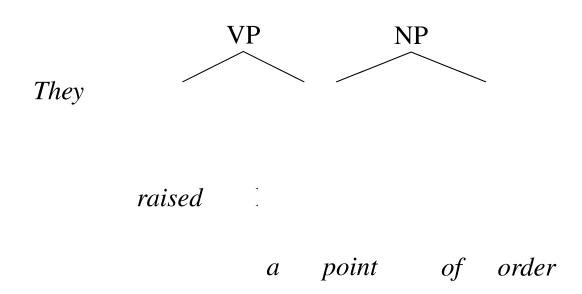
Independence assumptions are often too strong.



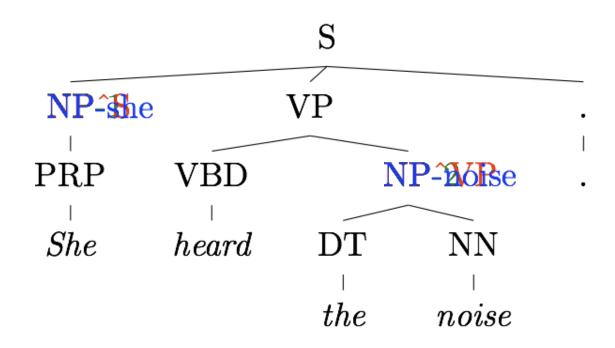
- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Grammar Refinement

Example: PP attachment



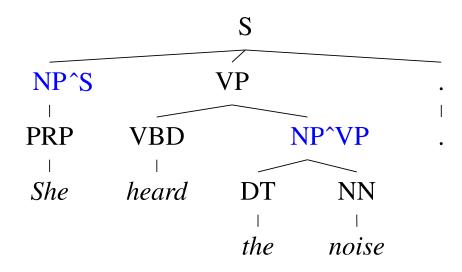
Grammar Refinement



- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

Structural Annotation

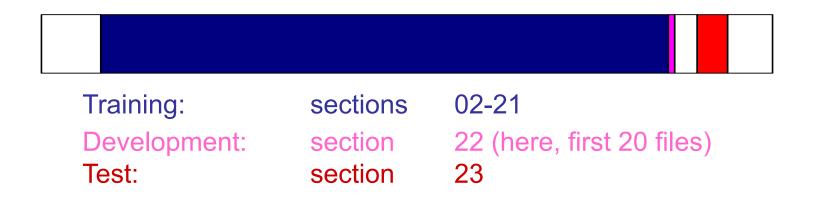
The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation

Typical Experimental Setup

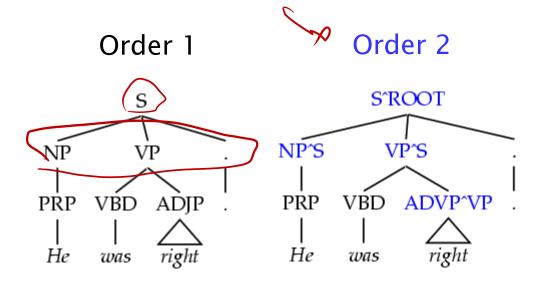
Corpus: Penn Treebank, WSJ

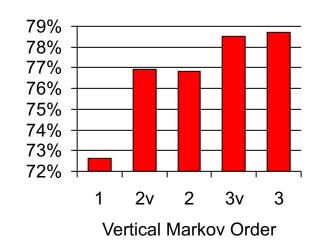


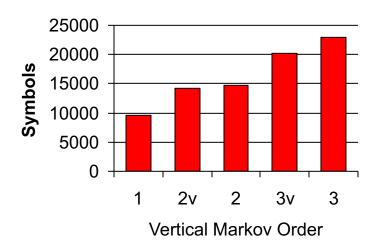
- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.

Vertical Markovization

 Vertical Markov order: rewrites depend on past k ancestor nodes.
 (cf. parent annotation)







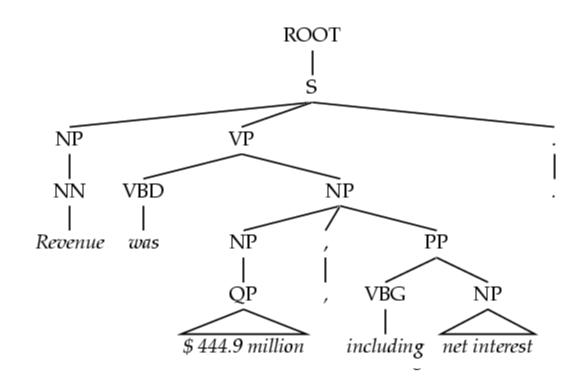
Horizontal Markovization



Unary Splits

 Problem: unary rewrites used to transmute categories so a high-probability rule can be used.

Solution: Mark unary rewrite sites with -U



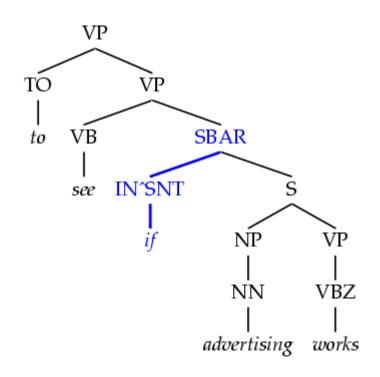
Annotation	F1	Size
Base	77.8	7.5K
UNARY	78.3	8.0K

Tag Splits

Problem: Treebank tags are too coarse.

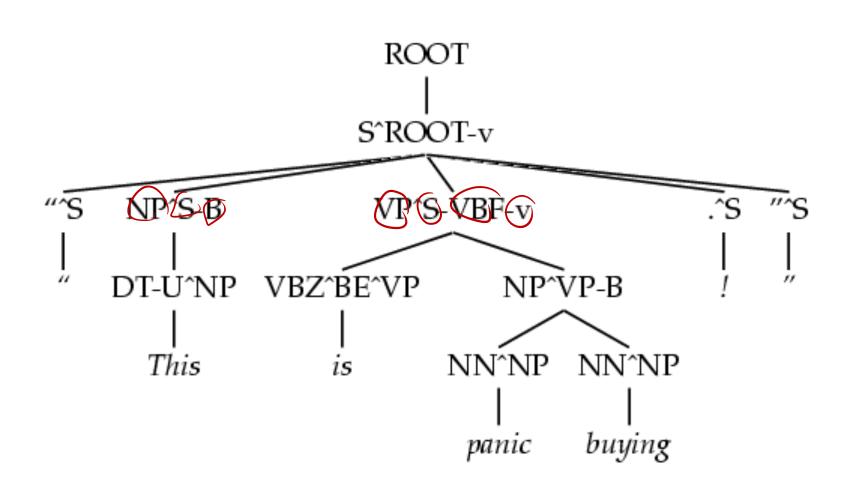
 Example: Sentential, PP, and other prepositions are all marked IN.

- Partial Solution:
 - Subdivide the IN tag.



Annotation	F1	Size
Previous	78.3	8.0K
SPLIT-IN	80.3	8.1K

A Fully Annotated (Unlex) Tree



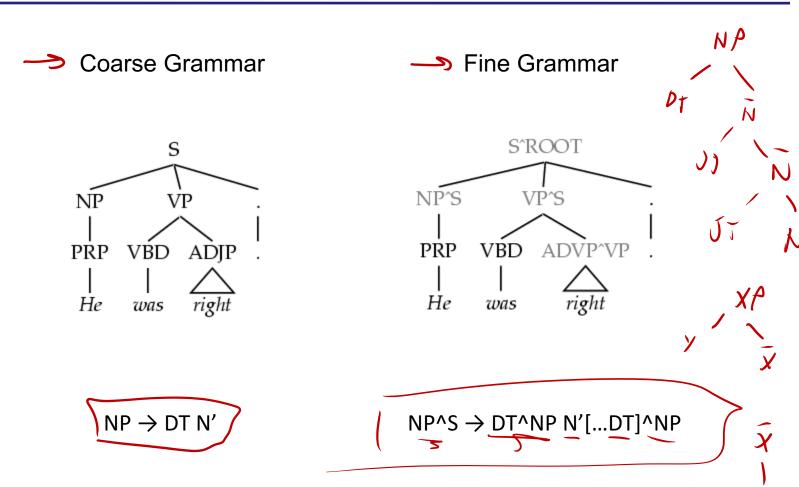
Some Test Set Results

Parser	LP	LR	F1	СВ	0 CB
Magerman 95	84.9	84.6	84.7	1.26	56.6
Collins 96	86.3	85.8	86.0	1.14	59.9
Unlexicalized	86.9	85.7	86.3	1.10	60.3
Charniak 97	87.4	87.5	87.4	1.00	62.1
Collins 99	88.7	88.6	88.6	0.90	67.1

- Beats "first generation" lexicalized parsers.
- Lots of room to improve more complex models next.

Efficient Parsing for Structural Annotation

Grammar Projections



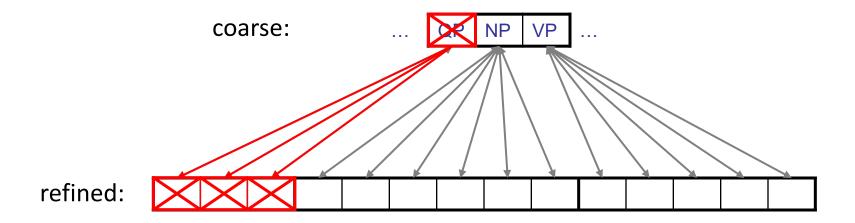
Note: X-Bar Grammars are projections with rules like $XP \rightarrow YX'$ or $XP \rightarrow X'Y$ or $X' \rightarrow X$

Coarse-to-Fine Pruning

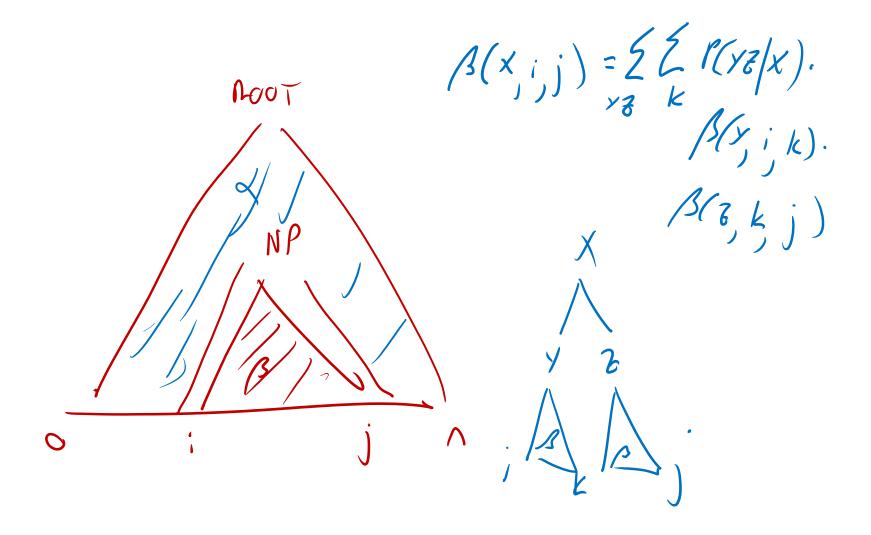
For each coarse chart item X[i,j], compute posterior probability:

$$\frac{\mathrm{P_{IN}}(X,i,j)\cdot\mathrm{P_{OUT}}(X,i,j)}{\mathrm{P_{IN}}(root,0,n)} \quad < \quad \textit{threshold}$$

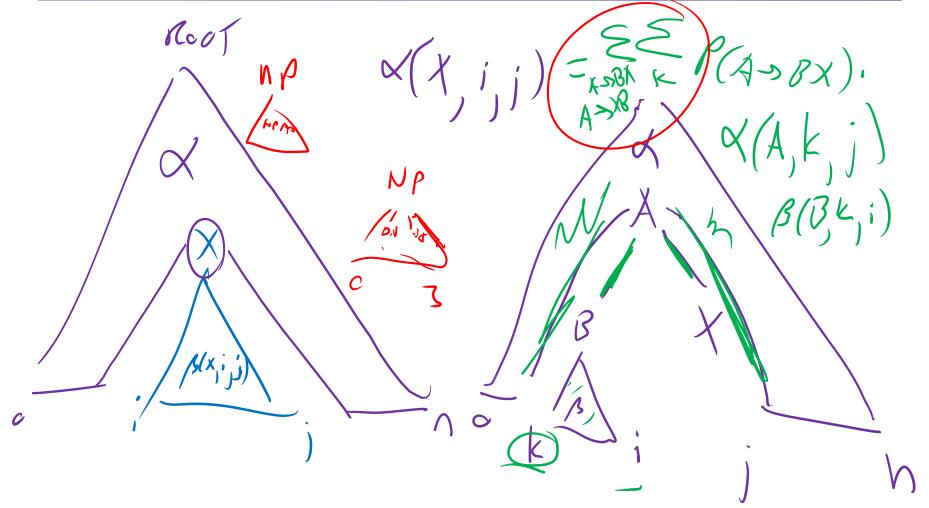
E.g. consider the span 5 to 12:



Computing (Max-)Marginals

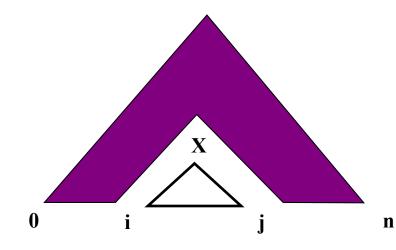


Inside and Outside Scores



Pruning with A*

- You can also speed up the search without sacrificing optimality
- For agenda-based parsers:
 - Can select which items to process first
 - Can do with any "figure of merit" [Charniak 98]
 - If your figure-of-merit is a valid A* heuristic, no loss of optimiality [Klein and Manning 03]

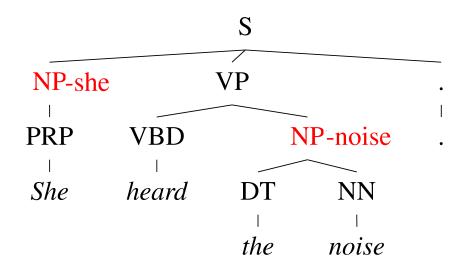


A* Parsing

Estimate	SX	SXL	SXLR	TRUE	
Summary	(1,6,NP)	(1,6,NP,VBZ)	(1,6,NP,VBZ,",")	(entire context)	
Best Tree	S PP , NP VP . IN NP DT JJ NN VBD	S	S	S S NP VP PRP VBZ NP VBZ NP DT NN UBZ NP VBZ NP PRP VBZ DT NN NP VBZ NP PRP VBZ DT NN NP VBZ NP VBZ NP NP VBZ NP VBZ NP NP NP VBZ NP	
Score	-11.3	-13.9	-15.1	-18.1	

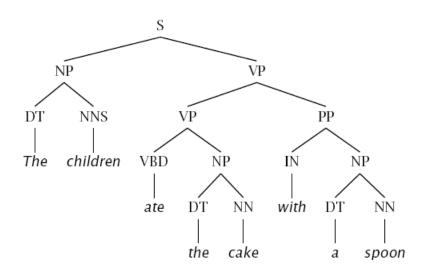
Lexicalization

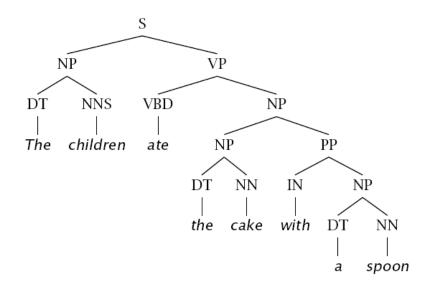
The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation [Johnson '98, Klein and Manning 03]
 - Head lexicalization [Collins '99, Charniak '00]

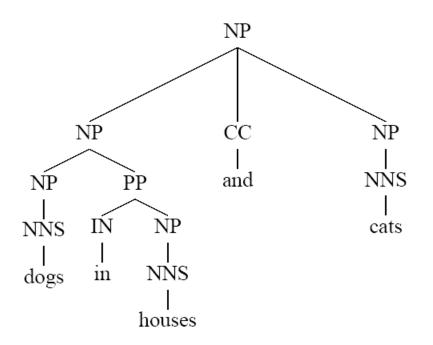
Problems with PCFGs

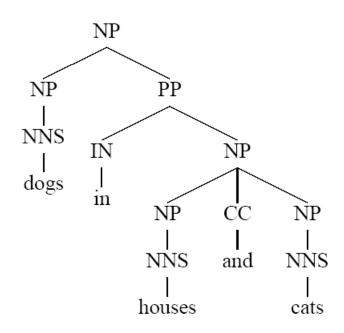




- If we do no annotation, these trees differ only in one rule:
 - VP → VP PP
 - NP → NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

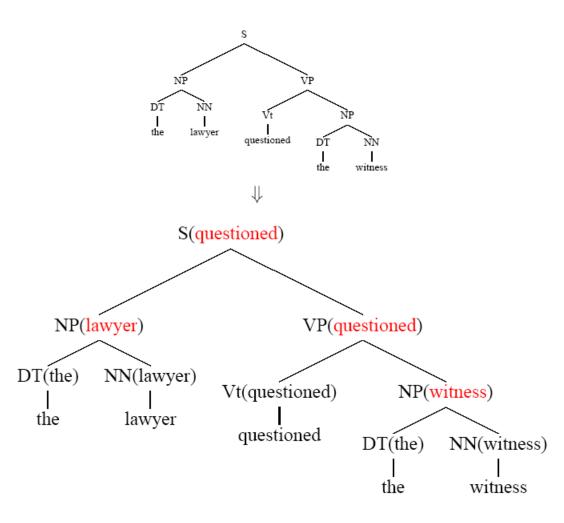




- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

Lexicalized Trees

- Add "head words" to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child



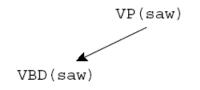
Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

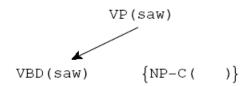
- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

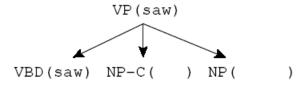
A derivation of a local tree [Collins 99]



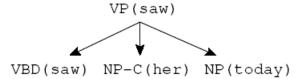
Choose a head tag and word



Choose a complement bag



Generate children (incl. adjuncts)



Recursively derive children

Lexicalized CKY

```
(VP->VBD...NP •) [saw]
                                                           X[h]
                                 NP[her]
               (VP->VBD •) [saw]
                                                         Y[h]
bestScore(X,i,j,h)
  if (j = i+1)
                                                      h
                                                            k
                                                                   h'
     return tagScore(X,s[i])
  else
     return
       max max score (X[h] \rightarrow Y[h] Z[h']) *
          k,h',X->YZ
                 bestScore(Y,i,k,h) *
                 bestScore(Z,k,j,h')
            max score (X[h] \rightarrow Y[h'] Z[h]) *
          k,h',X->YZ
                 bestScore(Y,i,k,h') *
                 bestScore(Z,k,j,h)
```

A Recursive Parser

```
bestScore(X,i,j,s)
  if (j = i+1)
     return tagScore(X,s[i])
  else
     return max score(X->YZ) *
          bestScore(Y,i,k) *
          bestScore(Z,k,j)
```

- Will this parser work?
- Why or why not?
- Memory requirements?

A Memoized Parser

One small change:

A Bottom-Up Parser (CKY)

Can also organize things bottom-up

```
bestScore(s)
  for (i : [0,n-1])
     for (X : tags[s[i]])
       score[X][i][i+1] =
          tagScore(X,s[i])
  for (diff : [2,n])
                                               k
     for (i : [0,n-diff])
       j = i + diff
       for (X->YZ : rule)
         for (k : [i+1, j-1])
           score[X][i][j] = max score[X][i][j],
                                 score(X->YZ) *
                                 score[Y][i][k] *
                                 score[Z][k][j]
```

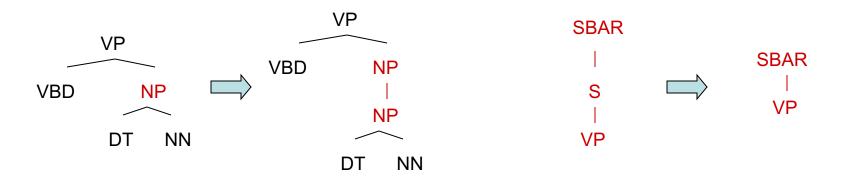
Unary Rules

• Unary rules?

```
bestScore(X,i,j,s)
  if (j = i+1)
    return tagScore(X,s[i])
  else
    return max max score(X->YZ) *
        bestScore(Y,i,k) *
        bestScore(Z,k,j)
    max score(X->Y) *
        bestScore(Y,i,j)
```


CNF + Unary Closure

- We need unaries to be non-cyclic
 - Can address by pre-calculating the unary closure
 - Rather than having zero or more unaries, always have exactly one



- Alternate unary and binary layers
- Reconstruct unary chains afterwards

Alternating Layers

```
bestScoreB(X,i,j,s)
      return max max score (X->YZ) *
                       bestScoreU(Y,i,k) *
                       bestScoreU(Z,k,j)
bestScoreU(X,i,j,s)
   if (j = i+1)
       return tagScore(X,s[i])
  else
       return max max score (X->Y) *
                       bestScoreB(Y,i,j)
```

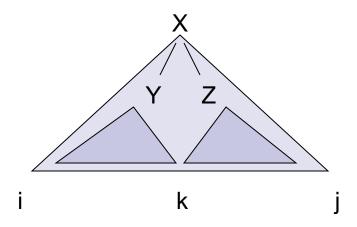
Analysis

Memory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: |symbols|*n² doubles
 - For the plain treebank grammar:
 - X ~ 20K, n = 40, double ~ 8 bytes = ~ 256MB
 - Big, but workable.
- Pruning: Beams
 - score[X][i][j] can get too large (when?)
 - Can keep beams (truncated maps score[i][j]) which only store the best few scores for the span [i,j]
- Pruning: Coarse-to-Fine
 - Use a smaller grammar to rule out most X[i,j]
 - Much more on this later...

Time: Theory

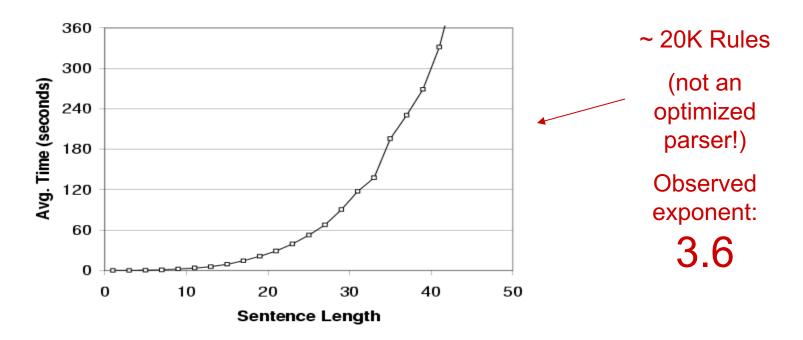
- How much time will it take to parse?
 - For each diff (<= n)</p>
 - For each i (<= n)</p>
 - For each rule $X \rightarrow Y Z$
 - For each split point kDo constant work



- Total time: |rules|*n³
- Something like 5 sec for an unoptimized parse of a 20-word sentence

Time: Practice

Parsing with the vanilla treebank grammar:



- Why's it worse in practice?
 - Longer sentences "unlock" more of the grammar
 - All kinds of systems issues don't scale

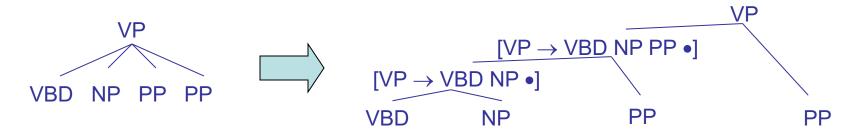
Efficient CKY

Lots of tricks to make CKY efficient

- Some of them are little engineering details:
 - E.g., first choose k, then enumerate through the Y:[i,k] which are non-zero, then loop through rules by left child.
 - Optimal layout of the dynamic program depends on grammar, input, even system details.
- Another kind is more important (and interesting):
 - Many X[i,j] can be suppressed on the basis of the input string
 - We'll see this next class as figures-of-merit, A* heuristics, coarseto-fine, etc

Binarization

- Chomsky normal form:
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals

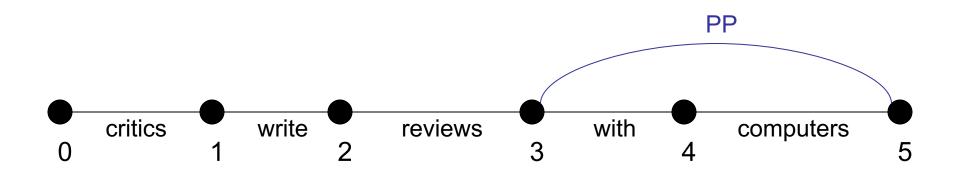


- Unaries / empties are "promoted"
- In practice it's kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

Agenda-Based Parsing

Agenda-Based Parsing

- Agenda-based parsing is like graph search (but over a hypergraph)
- Concepts:
 - Numbering: we number fenceposts between words
 - "Edges" or items: spans with labels, e.g. PP[3,5], represent the sets of trees over those words rooted at that label (cf. search states)
 - A chart: records edges we've expanded (cf. closed set)
 - An agenda: a queue which holds edges (cf. a fringe or open set)



Word Items

- Building an item for the first time is called discovery. Items go into the agenda on discovery.
- To initialize, we discover all word items (with score 1.0).

AGENDA

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

CHART [EMPTY]

critics write reviews with computers

Unary Projection

 When we pop a word item, the lexicon tells us the tag item successors (and scores) which go on the agenda

```
critics[0,1] write[1,2] reviews[2,3] with[3,4] computers[4,5] NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]
```


critics write reviews with computers

Item Successors

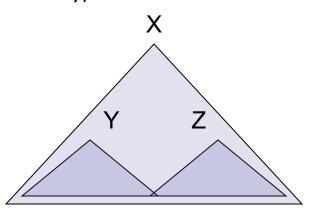
- When we pop items off of the agenda:
 - Graph successors: unary projections (NNS \rightarrow critics, NP \rightarrow NNS)

$$Y[i,j]$$
 with $X \rightarrow Y$ forms $X[i,j]$

Hypergraph successors: combine with items already in our chart

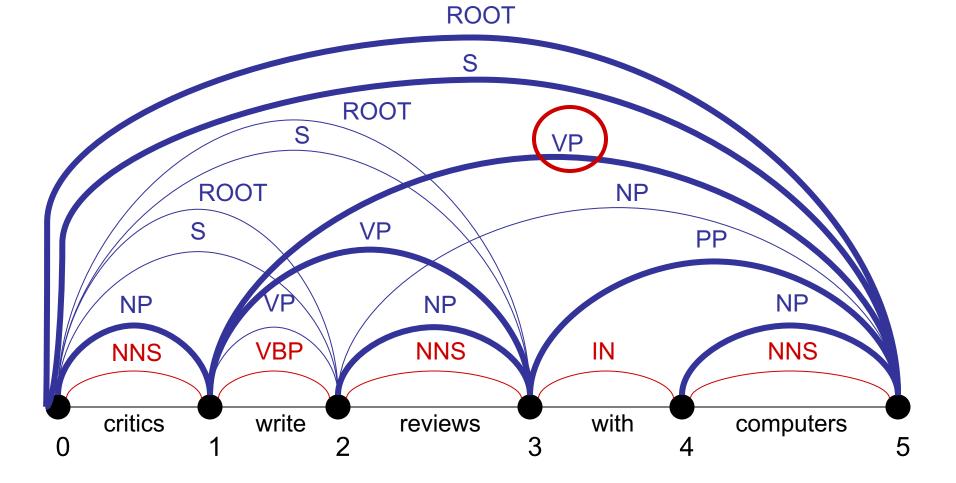
$$Y[i,j]$$
 and $Z[j,k]$ with $X \rightarrow Y Z$ form $X[i,k]$

- Enqueue / promote resulting items (if not in chart already)
- Record backtraces as appropriate
- Stick the popped edge in the chart (closed set)
- Queries a chart must support:
 - Is edge X[i,j] in the chart? (What score?)
 - What edges with label Y end at position j?
 - What edges with label Z start at position i?



An Example

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2] VP[1,3] PP[3,5] ROOT[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOT[0,5]



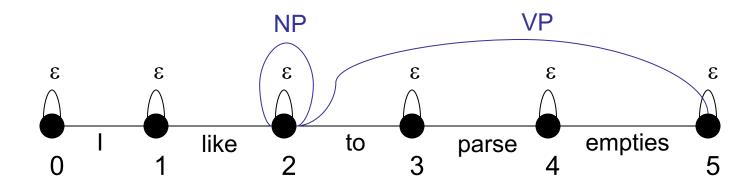
Empty Elements

Sometimes we want to posit nodes in a parse tree that don't contain any pronounced words:

I want you to parse this sentence

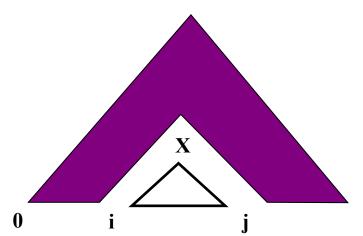
I want [] to parse this sentence

- These are easy to add to a agenda-based parser!
 - For each position i, add the "word" edge ε[i,i]
 - Add rules like NP ightarrow ϵ to the grammar
 - That's it!



UCS / A*

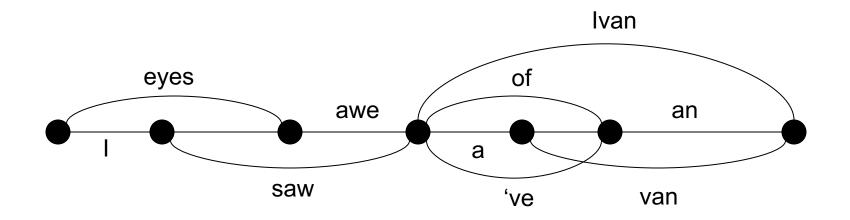
- With weighted edges, order matters
 - Must expand optimal parse from bottom up (subparses first)
 - CKY does this by processing smaller spans before larger ones
 - UCS pops items off the agenda in order of decreasing Viterbi score
 - A* search also well defined
- You can also speed up the search without sacrificing optimality
 - Can select which items to process first
 - Can do with any "figure of merit" [Charniak 98]
 - If your figure-of-merit is a valid A* heuristic, no loss of optimiality [Klein and Manning 03]



n

(Speech) Lattices

- There was nothing magical about words spanning exactly one position.
- When working with speech, we generally don't know how many words there are, or where they break.
- We can represent the possibilities as a lattice and parse these just as easily.

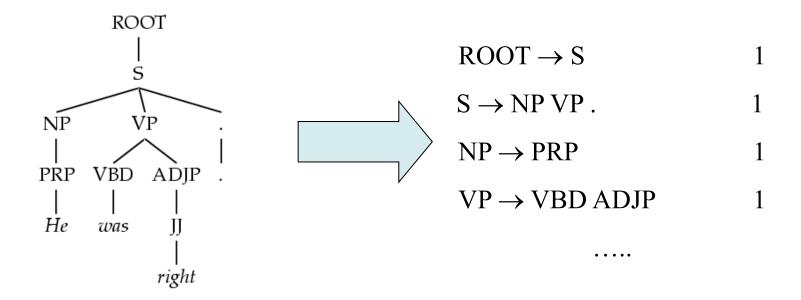


Learning PCFGs

Treebank PCFGs

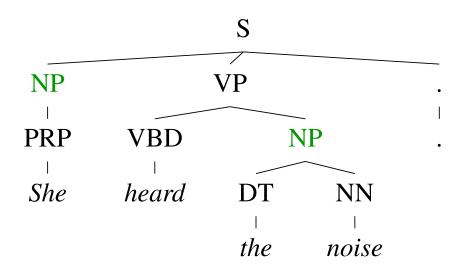
[Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):



Model	F1
Baseline	72.0

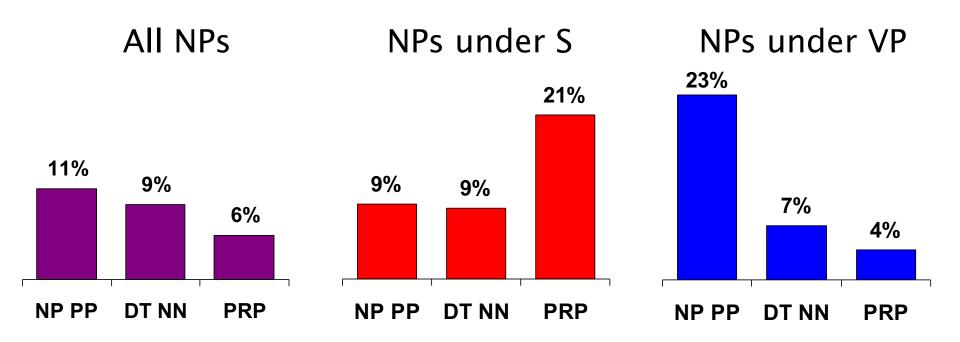
Conditional Independence?



- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

Non-Independence

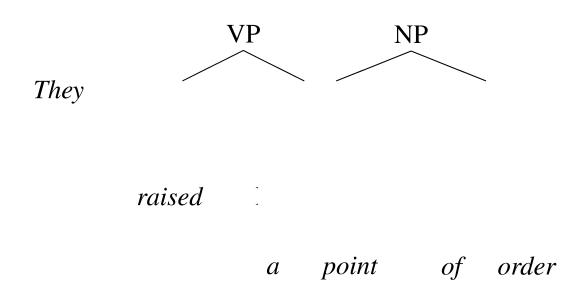
Independence assumptions are often too strong.



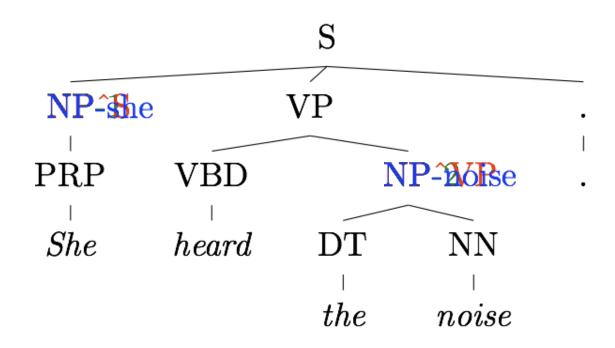
- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Grammar Refinement

Example: PP attachment



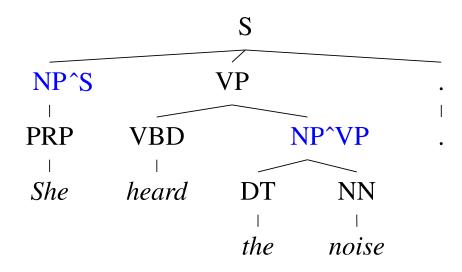
Grammar Refinement



- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

Structural Annotation

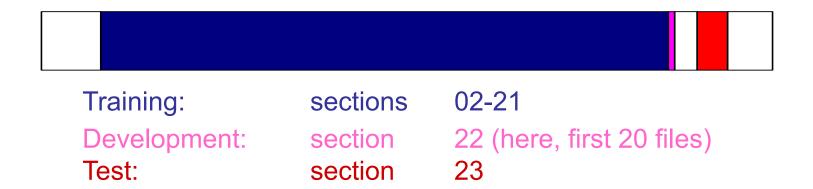
The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation

Typical Experimental Setup

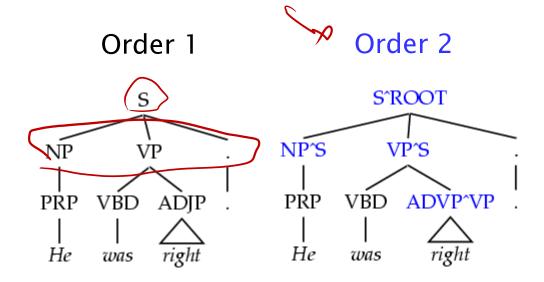
Corpus: Penn Treebank, WSJ

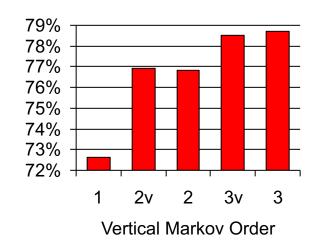


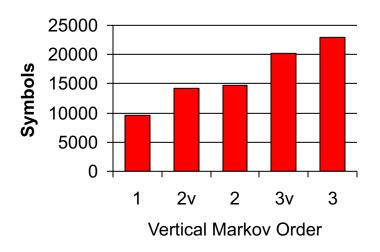
- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.

Vertical Markovization

 Vertical Markov order: rewrites depend on past k ancestor nodes.
 (cf. parent annotation)







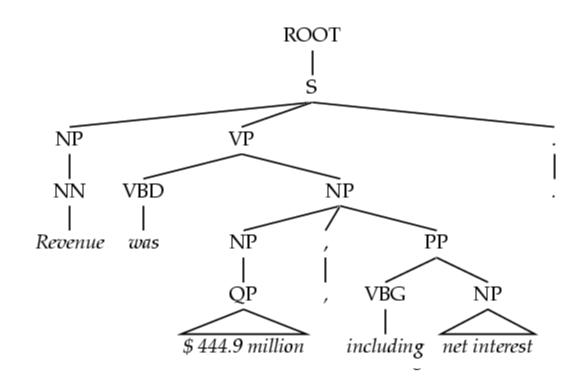
Horizontal Markovization



Unary Splits

 Problem: unary rewrites used to transmute categories so a high-probability rule can be used.

Solution: Mark unary rewrite sites with -U



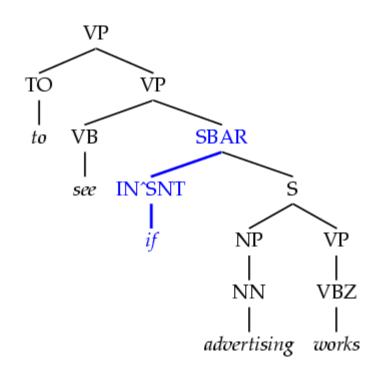
Annotation	F1	Size
Base	77.8	7.5K
UNARY	78.3	8.0K

Tag Splits

 Problem: Treebank tags are too coarse.

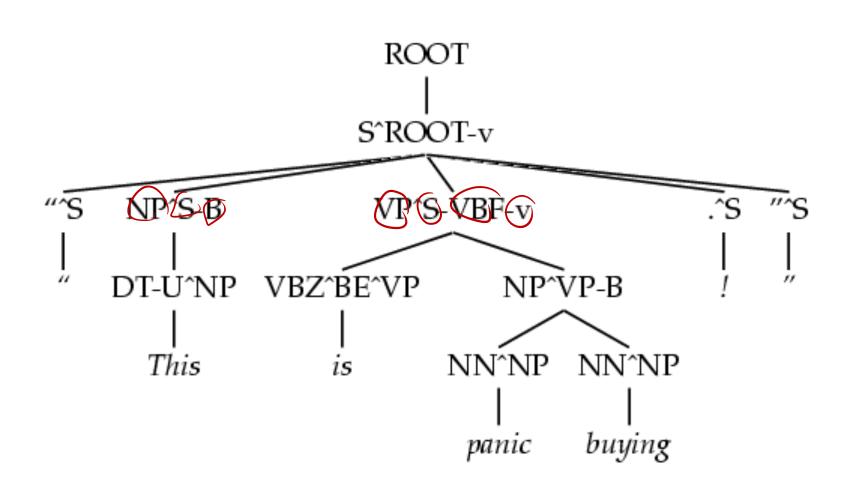
 Example: Sentential, PP, and other prepositions are all marked IN.

- Partial Solution:
 - Subdivide the IN tag.



Annotation	F1	Size
Previous	78.3	8.0K
SPLIT-IN	80.3	8.1K

A Fully Annotated (Unlex) Tree



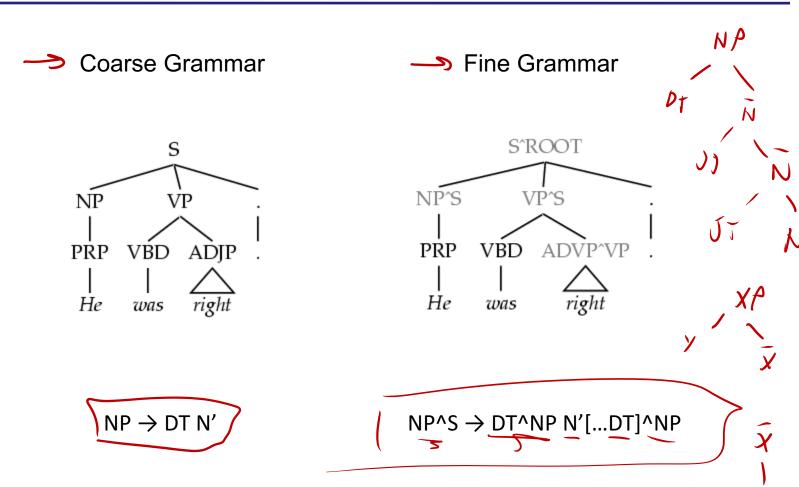
Some Test Set Results

Parser	LP	LR	F1	СВ	0 CB
Magerman 95	84.9	84.6	84.7	1.26	56.6
Collins 96	86.3	85.8	86.0	1.14	59.9
Unlexicalized	86.9	85.7	86.3	1.10	60.3
Charniak 97	87.4	87.5	87.4	1.00	62.1
Collins 99	88.7	88.6	88.6	0.90	67.1

- Beats "first generation" lexicalized parsers.
- Lots of room to improve more complex models next.

Efficient Parsing for Structural Annotation

Grammar Projections



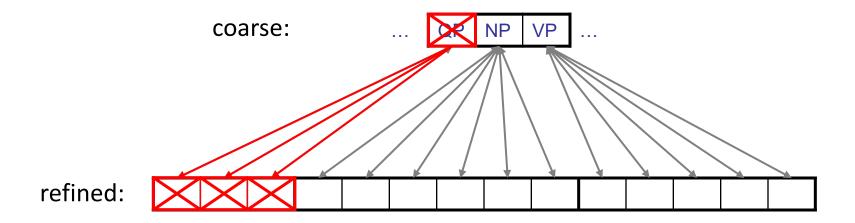
Note: X-Bar Grammars are projections with rules like $XP \rightarrow YX'$ or $XP \rightarrow X'Y$ or $X' \rightarrow X$

Coarse-to-Fine Pruning

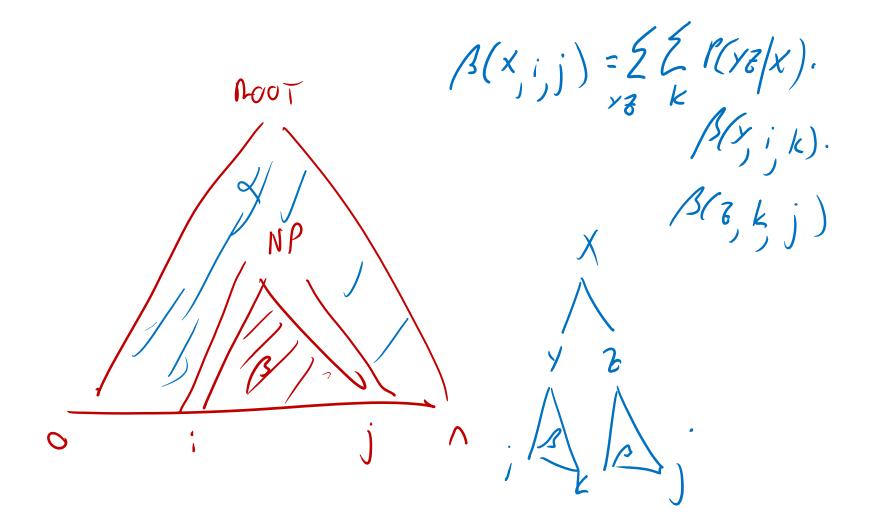
For each coarse chart item X[i,j], compute posterior probability:

$$\frac{\mathrm{P_{IN}}(X,i,j)\cdot\mathrm{P_{OUT}}(X,i,j)}{\mathrm{P_{IN}}(root,0,n)} \quad < \quad \textit{threshold}$$

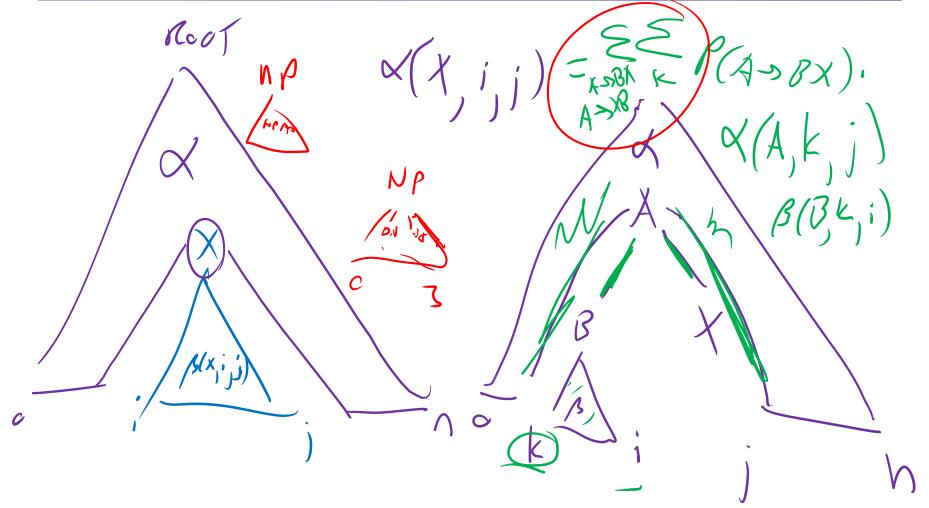
E.g. consider the span 5 to 12:



Computing (Max-)Marginals

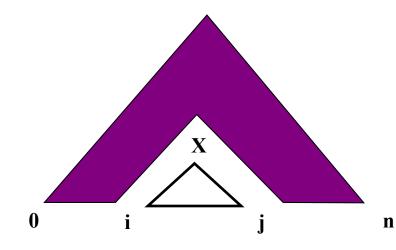


Inside and Outside Scores



Pruning with A*

- You can also speed up the search without sacrificing optimality
- For agenda-based parsers:
 - Can select which items to process first
 - Can do with any "figure of merit" [Charniak 98]
 - If your figure-of-merit is a valid A* heuristic, no loss of optimiality [Klein and Manning 03]

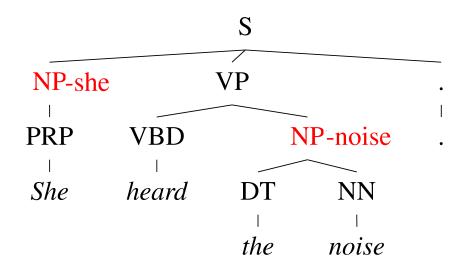


A* Parsing

Estimate	SX	SX SXL SXLR		TRUE
Summary	(1,6,NP)	(1,6,NP) (1,6,NP,VBZ)		(entire context)
Best Tree	S PP , NP VP . IN NP DT JJ NN VBD	S	S VP VP VBZ NP PP VBZ NP NP, CC NP , DT NNP NNP NNP NNP NNP NNP NNP NNP NNP NN	
Score	-11.3	-13.9	-15.1	-18.1

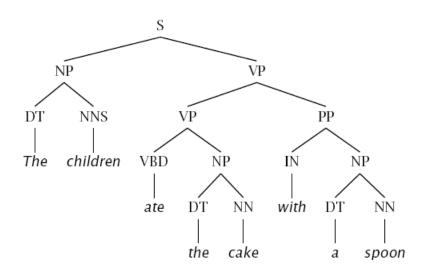
Lexicalization

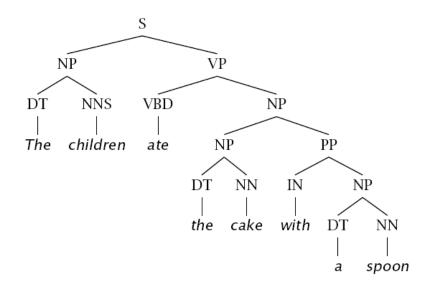
The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation [Johnson '98, Klein and Manning 03]
 - Head lexicalization [Collins '99, Charniak '00]

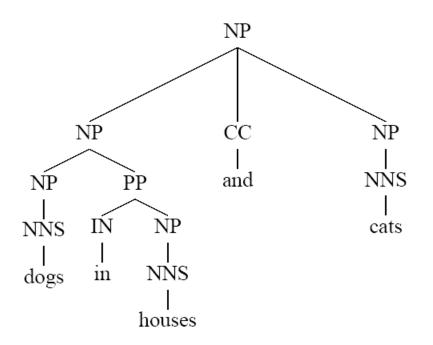
Problems with PCFGs

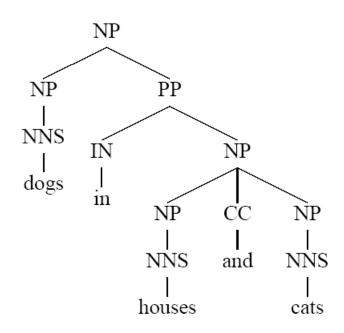




- If we do no annotation, these trees differ only in one rule:
 - VP → VP PP
 - NP → NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

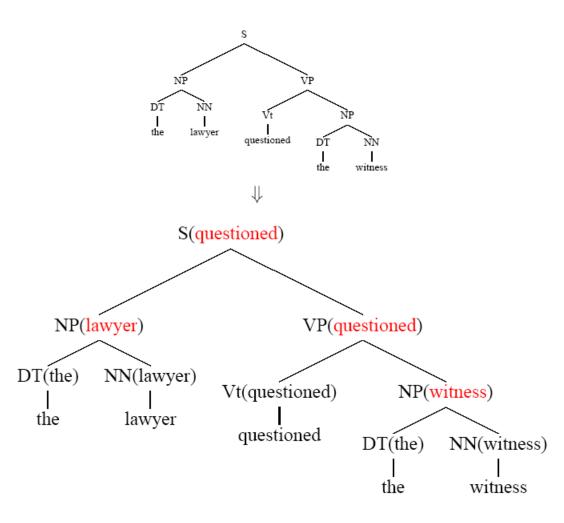




- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

Lexicalized Trees

- Add "head words" to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child



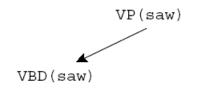
Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

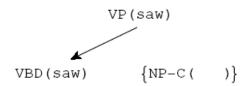
- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

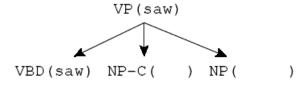
A derivation of a local tree [Collins 99]



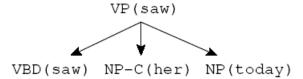
Choose a head tag and word



Choose a complement bag



Generate children (incl. adjuncts)



Recursively derive children

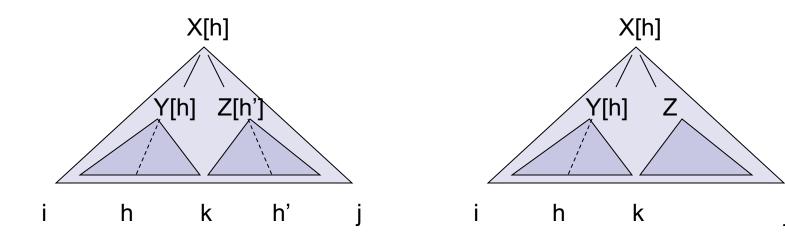
Lexicalized CKY

```
(VP->VBD...NP •) [saw]
                                                           X[h]
                                 NP[her]
               (VP->VBD •) [saw]
                                                         Y[h]
bestScore(X,i,j,h)
  if (j = i+1)
                                                      h
                                                            k
                                                                   h'
     return tagScore(X,s[i])
  else
     return
       max max score (X[h] \rightarrow Y[h] Z[h']) *
          k,h',X->YZ
                 bestScore(Y,i,k,h) *
                 bestScore(Z,k,j,h')
            max score (X[h] \rightarrow Y[h'] Z[h]) *
          k,h',X->YZ
                 bestScore(Y,i,k,h') *
                 bestScore(Z,k,j,h)
```

Efficient Parsing for Lexical Grammars

Quartic Parsing

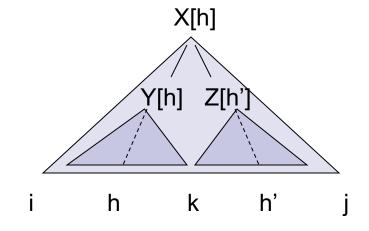
Turns out, you can do (a little) better [Eisner 99]



- Gives an O(n⁴) algorithm
- Still prohibitive in practice if not pruned

Pruning with Beams

- The Collins parser prunes with percell beams [Collins 99]
 - Essentially, run the O(n⁵) CKY
 - Remember only a few hypotheses for each span <i,j>.
 - If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
 - Keeps things more or less cubic (and in practice is more like linear!)



 Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Pruning with a PCFG

- The Charniak parser prunes using a two-pass, coarseto-fine approach [Charniak 97+]
 - First, parse with the base grammar
 - For each X:[i,j] calculate P(X|i,j,s)
 - This isn't trivial, and there are clever speed ups
 - Second, do the full O(n⁵) CKY
 - Skip any X :[i,j] which had low (say, < 0.0001) posterior</p>
 - Avoids almost all work in the second phase!
- Charniak et al 06: can use more passes
- Petrov et al 07: can use many more passes

Results

Some results

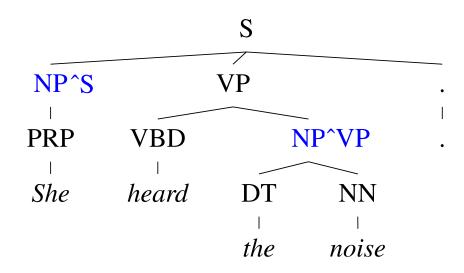
- Collins 99 88.6 F1 (generative lexical)
- Charniak and Johnson 05 89.7 / 91.3 F1 (generative lexical / reranked)
- Petrov et al 06 90.7 F1 (generative unlexical)
- McClosky et al 06 92.1 F1 (gen + rerank + self-train)

However

- Bilexical counts rarely make a difference (why?)
- Gildea 01 Removing bilexical counts costs < 0.5 F1

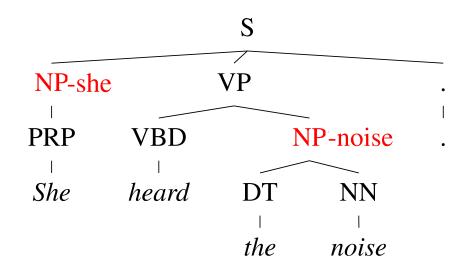
Latent Variable PCFGs

The Game of Designing a Grammar



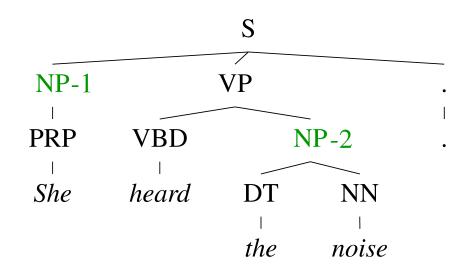
- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]

The Game of Designing a Grammar



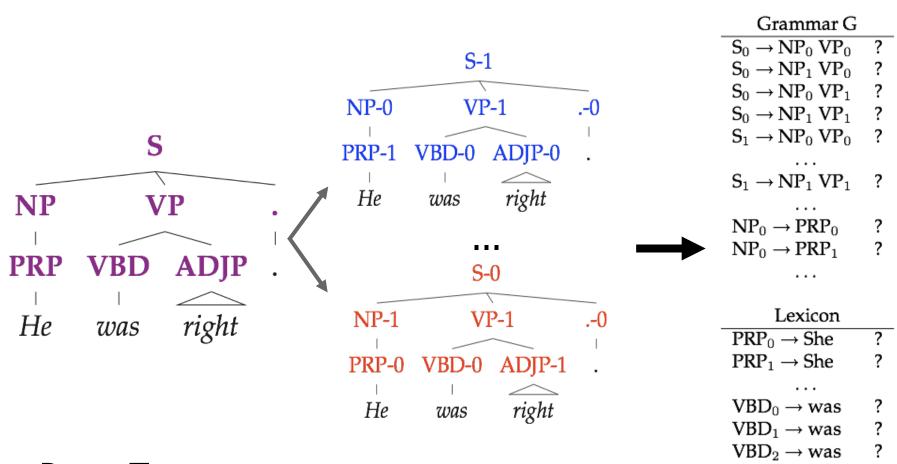
- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]

The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]
 - Automatic clustering?

Latent Variable Grammars



Parse Tree TSentence w

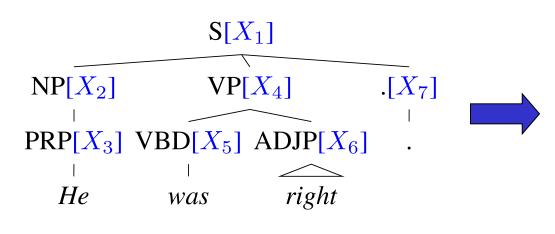
Derivations t:T

Parameters θ

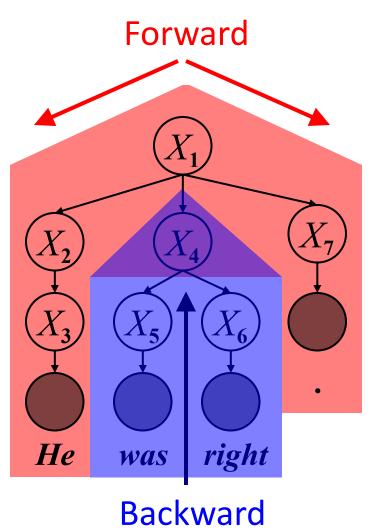
Learning Latent Annotations

EM algorithm:

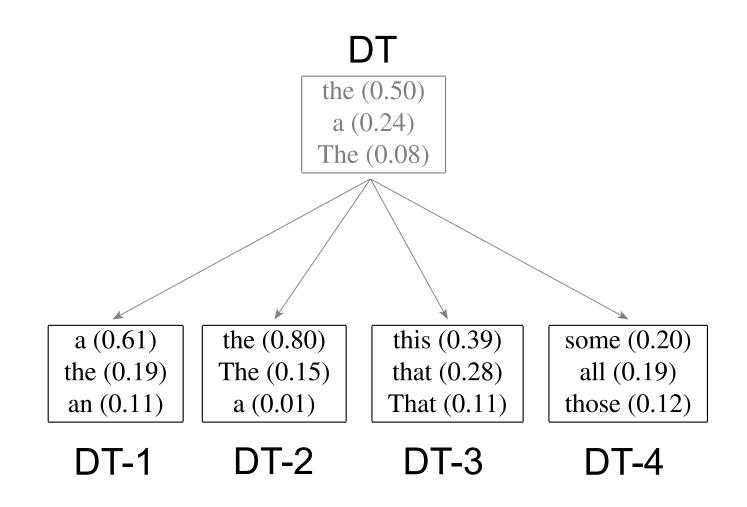
- Brackets are known
- Base categories are known
- Only induce subcategories



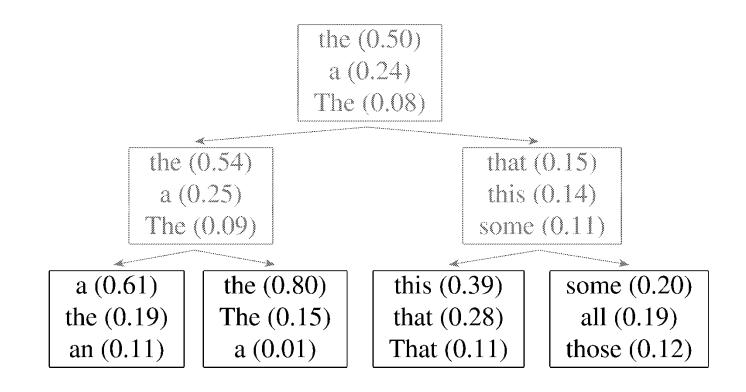
Just like Forward-Backward for HMMs.



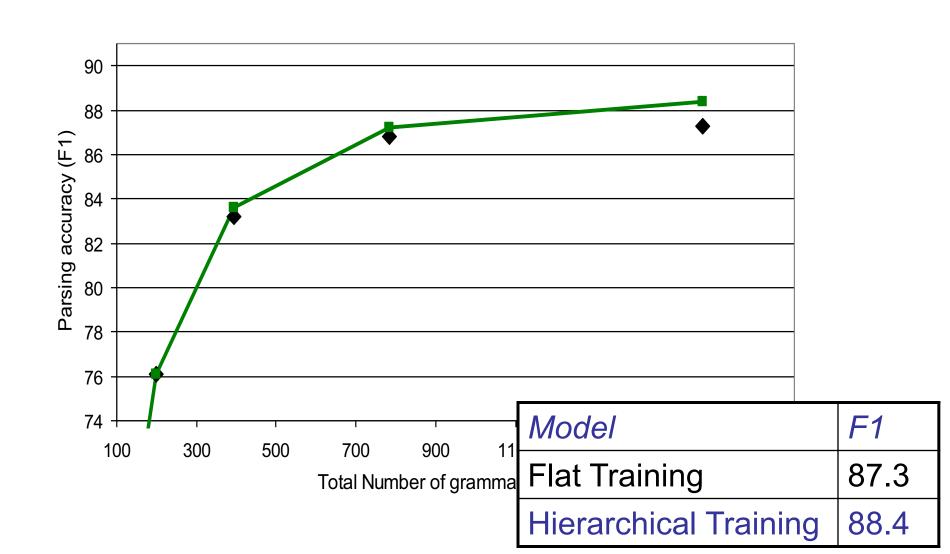
Refinement of the DT tag



Hierarchical refinement

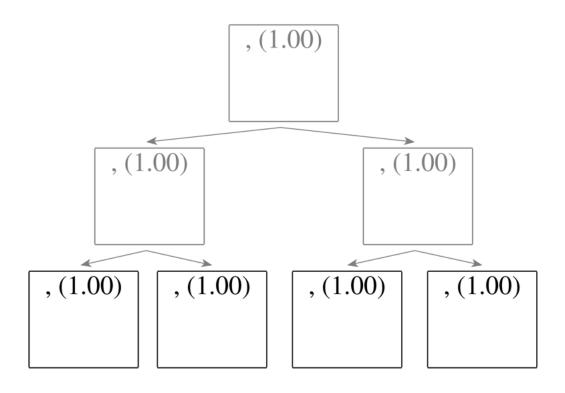


Hierarchical Estimation Results



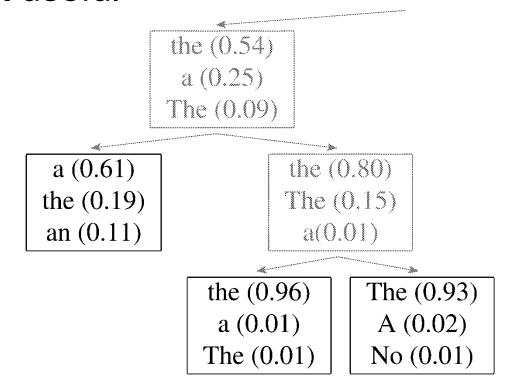
Refinement of the, tag

Splitting all categories equally is wasteful:

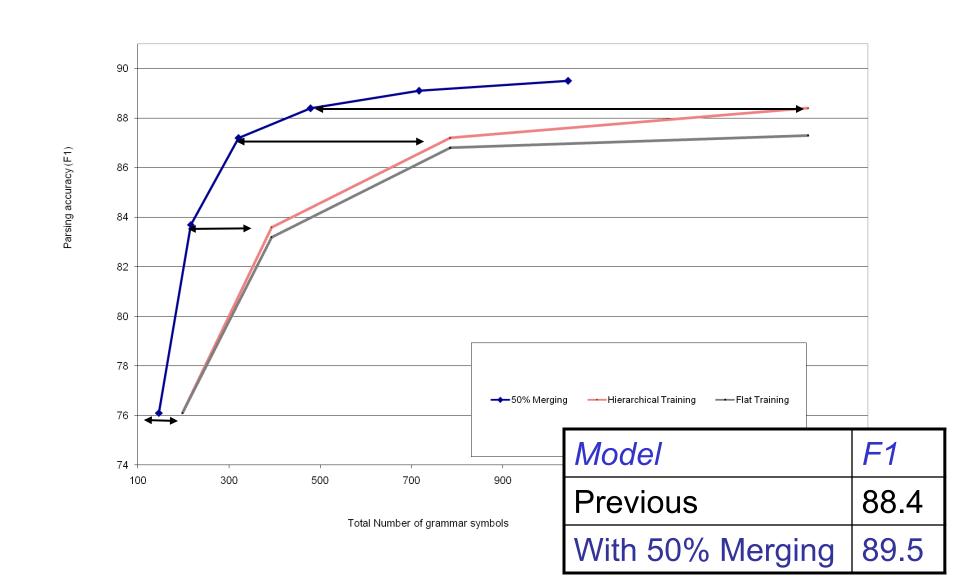


Adaptive Splitting

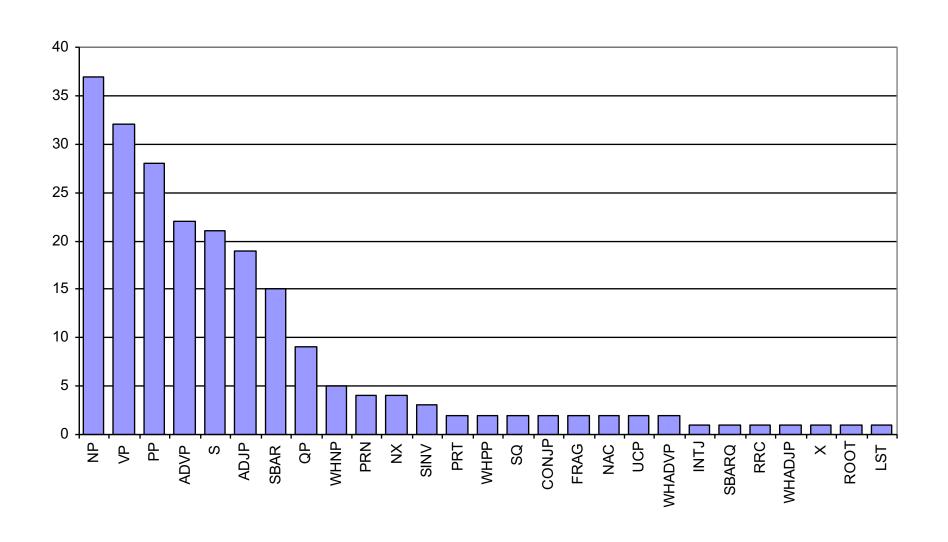
- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful



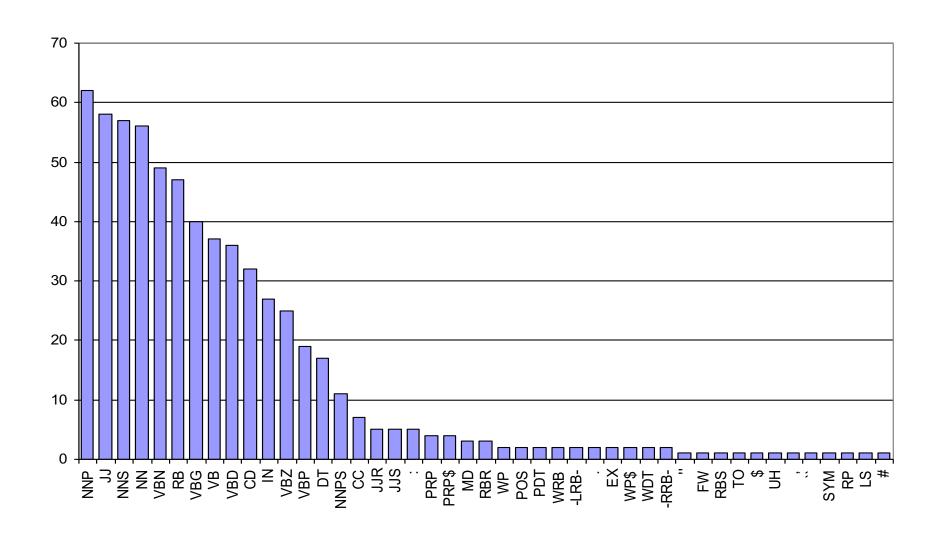
Adaptive Splitting Results



Number of Phrasal Subcategories



Number of Lexical Subcategories



Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	lt	He	
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Final Results (Accuracy)

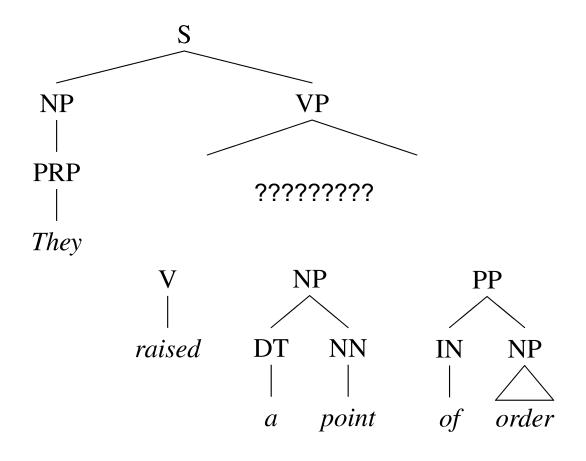
		≤ 40 words F1	all F1
□	Charniak&Johnson '05 (generative)	90.1	89.6
ENG	Split / Merge	90.6	90.1
G	Dubey '05	76.3	-
E	Split / Merge	80.8	80.1
<u>C</u>	Chiang et al. '02	80.0	76.6
CHN	Split / Merge	86.3	83.4

Still higher numbers from reranking / self-training methods

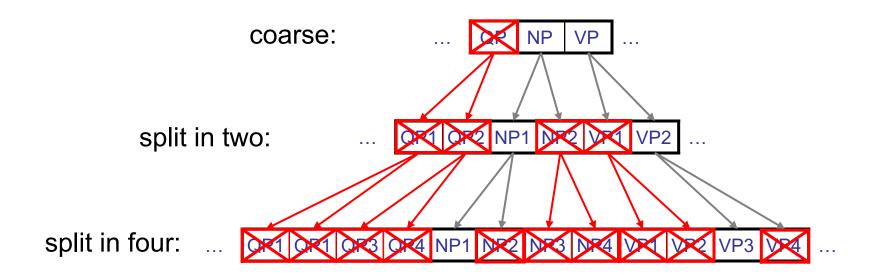
Efficient Parsing for Hierarchical Grammars

Coarse-to-Fine Inference

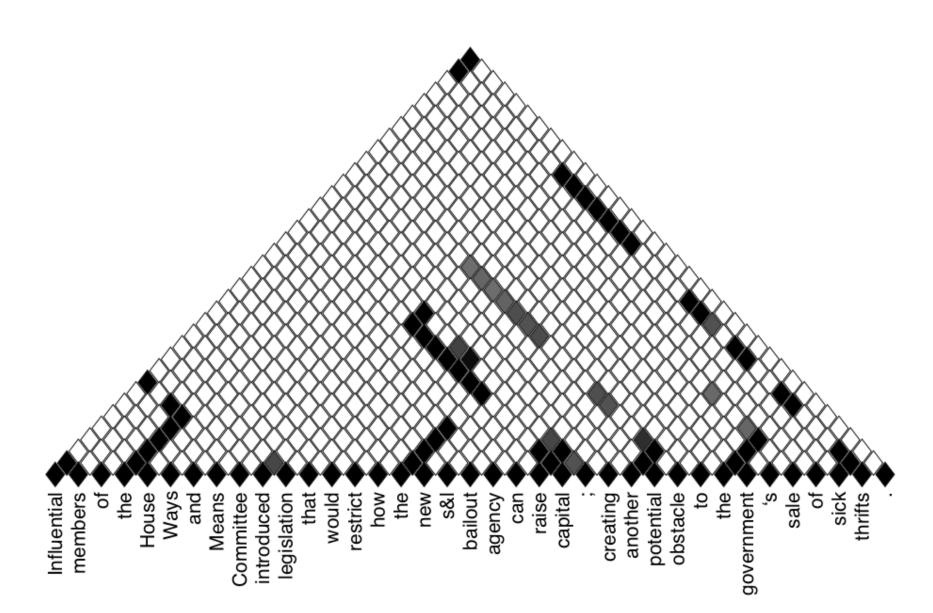
Example: PP attachment



Hierarchical Pruning



Bracket Posteriors



1621 min **111** min **35** min 15 min (no search error)

Unsupervised Tagging

Unsupervised Tagging?

- AKA part-of-speech induction
- Task:
 - Raw sentences in
 - Tagged sentences out
- Obvious thing to do:
 - Start with a (mostly) uniform HMM
 - Run EM
 - Inspect results

EM for HMMs: Process

- Alternate between recomputing distributions over hidden variables (the tags) and reestimating parameters
- Crucial step: we want to tally up how many (fractional) counts of each kind of transition and emission we have under current params:

$$count(w,s) = \sum_{i:w_i=w} P(t_i = s|\mathbf{w})$$

$$count(s \to s') = \sum_{i} P(t_{i-1} = s, t_i = s'|\mathbf{w})$$

Same quantities we needed to train a CRF!

Merialdo: Setup

Some (discouraging) experiments [Merialdo 94]

Setup:

- You know the set of allowable tags for each word
- Fix k training examples to their true labels
 - Learn P(w|t) on these examples
 - Learn P(t|t₋₁,t₋₂) on these examples
- On n examples, re-estimate with EM
- Note: we know allowed tags but not frequencies

EM for HMMs: Quantities

Total path values (correspond to probabilities here):

$$\alpha_i(s) = P(w_0 \dots w_i, s_i)$$

= $\sum_{s_{i-1}} P(s_i|s_{i-1}) P(w_i|s_i) \alpha_{i-1}(s_{i-1})$

$$\beta_i(s) = P(w_i + 1 \dots w_n | s_i)$$

$$= \sum_{s_{i+1}} P(s_{i+1} | s_i) P(w_{i+1} | s_{i+1}) \beta_{i+1}(s_{i+1})$$

The State Lattice / Trellis

\wedge	\wedge	\wedge	\(\)	\wedge	\wedge
N	N	N	N	N	N
\bigcirc	V	V	V	\bigcirc	\bigcirc
J	J	J	J	J	J
D	D	D	D	D	D
\$	\$	\$	\$	\$	\$
START	Fed	raises	interest	rates	END

EM for HMMs: Process

From these quantities, can compute expected transitions:

$$count(s \to s') = \frac{\sum_{i} \alpha_i(s) P(s'|s) P(w_i|s) \beta_{i+1}(s')}{P(\mathbf{w})}$$

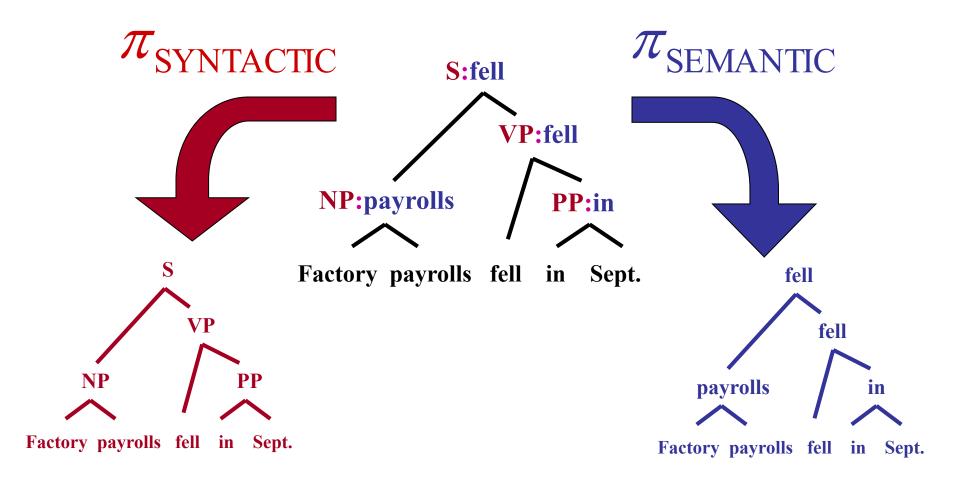
And emissions:

$$count(w,s) = \frac{\sum_{i:w_i=w} \alpha_i(s)\beta_{i+1}(s)}{P(\mathbf{w})}$$

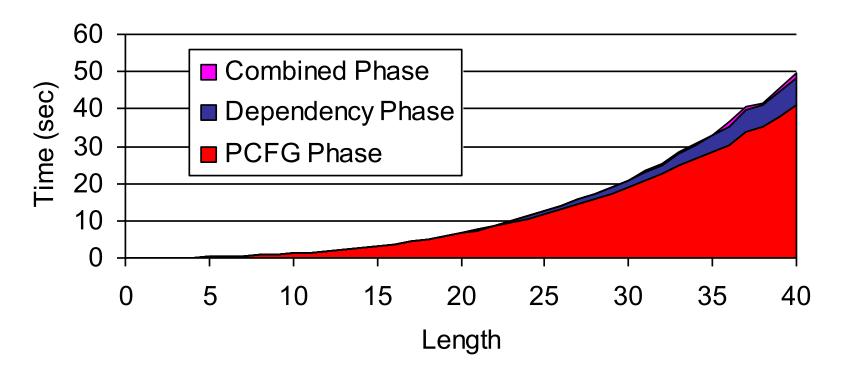
Merialdo: Results

Nι	Number of tagged sentences used for the initial model					nodel	
	0	100	2000	5000	10000	20000	all
Iter	Co	rrect tag	gs (% w	ords) af	ter ML c	n 1M wo	rds
0	77.0	90.0	95.4	96.2	96.6	96.9	97.0
1	80.5	92.6	95.8	96.3	96.6	96.7	96.8
2	81.8	93.0	95. <i>7</i>	96.1	96.3	96.4	96.4
3	83.0	93.1	95.4	95.8	96.1	96.2	96.2
4	84.0	93.0	95.2	95.5	95.8	96.0	96.0
5	84.8	92.9	95.1	95.4	95.6	95.8	95.8
6	85.3	92.8	94.9	95.2	95.5	95.6	95.7
7	85.8	92.8	94.7	95.1	95.3	95.5	95.5
8	86.1	92.7	94.6	95.0	95.2	95.4	95.4
9	86.3	92.6	94.5	94.9	95.1	95.3	95.3
10	86.6	92.6	94.4	94.8	95.0	95.2	95.2

Projection-Based A*



A* Speedup

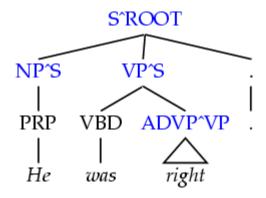


 Total time dominated by calculation of A* tables in each projection... O(n³)

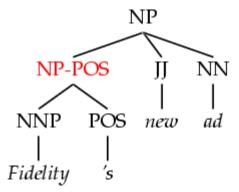
Breaking Up the Symbols

• We can relax independence assumptions by encoding dependencies into the PCFG symbols:

Parent annotation [Johnson 98]



Marking possessive NPs



What are the most useful "features" to encode?

Other Tag Splits

- UNARY-DT: mark demonstratives as DT^U ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^VP)
- SPLIT-AUX: mark auxiliary verbs with –AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "&" from other conjunctions
- SPLIT-%: "%" gets its own tag.

F1	Size
80.4	8.1K
80.5	8.1K
81.2	8.5K
81.6	9.0K
81.7	9.1K
81.8	9.3K